DRAFT REPORT

INSTALLATION RESTORATION STUDY NAVAL SUBMARINE BASE - NEW LONDON GROTON, CONNECTICUT

APPENDICES

APPENDIX A SOIL GAS DATA

APPENDIX B
TEST BORING LOGS AND MONITORING WELL
CONSTRUCTION DETAILS
HYDRAULIC CONDUCTIVITY DATA

APPENDIX C
QUALITY ASSURANCE/QUALITY CONTROL REPORT
DATA REVIEW CHECKLIST

APPENDIX D
APPLICABLE, RELEVANT AND APPROPRIATE REQUIREMENTS
(ARARs)

PREPARED FOR:

NORTHERN DIVISION
- NAVAL FACILITIES ENGINEERING COMMAND
PHILADELPHIA, PENNSYLVANIA

AUGUST 1991

ATLANTIC PROJECT NO.: 1256-10 NAVY CONTRACT NO. N62472-88-C-1294

ATLANTIC

APPENDIX A SOIL GAS DATA

TORPEDO SHOP

			TORPEDO SHO	P AREA - SO	OIL GAS ANALYSIS	RESULTS			
	SAMPLE		INDICATOR	A.T.	ADDITIONAL	A,T.			TOTAL
SAMPLE ID	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.
SG1	ND				ND				
SG2	ND				ND				
SG3	Low	2.9	Benzene	79.6	ND				2.9
SG4	ND		*		ND				
SG5	Low	3.5	Benzene	78.9	ND		***		3.5
SG6	ND				ND				
SG7	Low	2.1	Benzene	79.8	ND				2.1
SG8	Trace	1.2	Unknown	110.8	Benzene	77.9	Trace	0.742	1.94
SG9	ND				ND				
SG10	Trace	0.761	Benzene	75.1	ND				0.761
SG11	ND				ND				
SG12	ND				ND				
SG13	ND				. ND		~~~		
SG14	Trace	2.0	Unknown	404.7	ND				2.0
SG15	Low	2.2	Unknown	408.0	Unknown	56.3	Trace	0.761	7.62
					Unknown	84.3	Trace	1.9	
					Unknown	109.8	Trace	1.8	
					Unknown	257.0	Trace	0.579	
					Unknown	336.0	Trace	0.375	
SG16	ND				ND				
SG17	Trace	1.2	Unknown	623.8	ND				1.2
SG18	Trace	0.614	Toluene	174.2	ND				0.614
SG19	Trace	1.2	Unknown	48.9	Toluene	179.2	Trace	0.370	2.09
·					PCE	252.8	Trace	0.521	
SG20	Low	3.1	DCE	44.7	Unknown	50.1	Low	2.2	10.46
,					Unknown	58.9	Low	3.1	
	•				Unknown	88.9	Trace	0.363	
					Toluene	185.2	Trace	1.7	

		IUR	PEDO SHOP AREA	***********		LIS (contin	nea)		
	SAMPLE		INDICATOR	R.T.	ADDITIONAL	R.T.			TOTAL
SAMPLE ID	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.
SG21	High	693.0	Unknown	170.4	Unknown	69.7	Trace	1.0	704.
			(Toluene may be		Benzene	77.3	Low	4.0	
			masked within		Unknown	114.4	Trace	1.4	
			peak)		Unknown	122.8	Low	2.9	
					Unknown	572.8	Trace	2.0	
SG22	ND				ND				
SG23	Low	16.5	Unknown	144.9	Benzene	78.5	Trace	1.5	29
					Unknown	115.3	Trace	0.549	
					Unknown	124.0	Trace	1.7	
					Toluene	177.0	Low	3.2	
					Unknown	575.8	Trace	0.707	
					Unknown	707.9	Low	4.4	
					Unknown	776.6	Trace	0.772	
SG24	Low	4.3	Toluene	175.2	Benzene	78.5	Trace	1.3	6
					Unknown	132.4	Trace	1.1	
SG25	Low	4.8	Unknown	709.7	Benzene	79.6	Trace	0.622	9.3
					Unknown	136.0	Trace	0.796	
					Toluene	178.2	Low	3.0	
SG26	Low	5.0	Unknown	733.9	DCE	46.5	Low	4.1	14
					Benzene	78.7	Trace	0.523	
					Unknown	137.6	Trace	0.629	
					Toluene	177.2	Trace	0.946	
					Unknown	322.3	Low	3.3	
SG27	Trace	0.867	DCE	47.9	Unknown	137.6	Trace	0.544	3.5
					Toluene	173.7	Trace	0.637	
		ļ			Unknown	700.7	Trace	0.846	
					Unknown	770.6	Trace	0.677	
SG28	Trace	2.0	Toluene	179.2	Benzene	80.5	Trace	1.0	4.7
					Unknown	138.8	Trace	0.596	
		-			Unknown	706.1	Trace	0.465	
				1	Unknown	774.6	Trace	0.669	

NOTES

- 1. Vs. is volt/seconds, which is an integrated area count of chromatographic peaks representing relative quantitation.
- 2. R.T. is retention time for specific compound in seconds.
- 3. Samples were classified by concentration using the following values:

ND = < 0.3 Vs.; Trace = 0.3 - 2.0 Vs.; Low = 2.1 - 50 Vs.; Moderate = 50.1 - 300 Vs.; and High = > 300 Vs.

GOSS COVE LANDFILL

	500 boots (6.00)	GOSS			ANALYSIS RESUL	TS			
	SAMPLE		INDICATOR	R.T.	ADDITIONAL	R.T.			TOTAL
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.
SG1	Low	6.5	PCE	259.8	Unknown	196.7	Trace	0.394	7.71
000					Unknown	357.4	Trace	0.811	
SG2	Trace	1.5	Unknown	145.2	Unknown	54.5	Trace	0.774	4.25
	·				Benzene	78.9	Trace	0.436	
				i	Toluene	176.2	Trace	0.652	
					PCE	259.1	Trace	0.576	
SG3	T				Unknown	359.2	Trace	0.308	
303	Trace	1.7	Toluene	176.2	Unknown	53.9	Trace	1.6	4.22
SG4					Benzene	78.9	Trace	0.921	
304	Low	2.4	Benzene	79.1	Unknown	49.1	Trace	0.466	7.97
				1	Unknown	54.1	Trace	1.3	
					Unknown	59.9	Low	2.4	
SG5	100				Toluene	176.7	Trace	1.4	
SG6	ND Tools				ND				
300	Trace	1.4	Unknown	54.7	Benzene	79.9	Trace	0.413	2.76
					Toluene	178.7	Trace	0.647	
SG7					Unknown	361.2	Trace	0.304	
	Trace	1.7	PCE	262.6	Unknown	59.1	Trace	0.359	2.06
SG8	Trace	1.4	Unknown	53.9	Benzene	80.2	Trace	0.467	2.74
	1				Toluene	181.7	Trace	0.555	
000					Unknown	362.2	Trace	0.317	
SG9	Low	3.3	PCE	264.0	Unknown	53.5	Trace	0.985	4.69
0046					Unknown	363.2	Trace	0.413	
SG10	Trace	1.2	Unknown	53.7	ND				1.2
SG11	Trace	1.4	Toluene	177.2	Benzene	78.9	Trace	0.724	2.12
SG12	Low	4.2	Unknown	53.5	Benzene	79.3	Trace	1.0	6.88
					Toluene	177.7	Trace	1.0	
0010					Unknown	357.4	Trace	0.679	
SG13	Trace	1.1	Unknown	53.3	PCE	185.7	Trace	0.451	2.39
					Unknown	357.4	Trace	0.509	
6644					Unknown	741.5	Trace	0.330	
SG14	Trace	1.0	Unknown	54.1	Unknown	196.2	Trace	0.984	2.32
					Unknown	359.2	Trace	0.339	
SG15	Low	8.0	Unknown	212.4	DCE	48.5	Low	2.4	56.9
					Unknown	52.3	Low	3.9	
					Unknown	67.7	Trace	0.972	
					Benzene	78.8	Low	3.0	
		ļ			Unknown	131.6	Low	3.2	
					Unknown	158.8	Trace	0.306	
					Toluene	175.7	Low	3.6	
					Unknown	247.9	Low	2.6	
		1			PCE	266.1	Trace	1.7	
					Unknown	356.5	Low	8.0	

	SAMPLE		INDICATOR	R.T.	LYSIS RESULTS (C	R.T.			
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS		CONCENTRATION		TOTAL
SG15			-AIV	(060.)	Unknown	(Sec.) 408.0	CONCENTRATION	Vs.	Vs.
(continued)					Xylenes	438.8	Low	3.1	
(1			Unknown	516.1	Low	2.8	
		1			Xylenes	557.9	Low	5.7	
					Unknown	662.1	Low	3.9	
SG16	Low	13.3	DCE	51.3	Unknown		Low	3.8	
		10.0	DOL	31.3	Benzene	71.5 78.5	Trace	1.8	30
					Toluene	76.5 175.2	Low	6.8	
	1				Unknown		Low	8.0	
	1	İ				356.5	Trace	0.436	
SG17	Low	9.6	PCE	259.1	Xylenes DCE	436.6	Trace	0.404	
	20	3.0	r OL	259.1		50.0	Low	12.5	46.1
					Benzene	78.7	Low	2.2	
]	Unknown	89.8	Trace	0.756	
					TCE	102.4	Trace	0.482	
				1	Unknown	131.6	Low	2.9	
					Unknown	158.8	Trace	0.377	
					Toluene	174.7	Low	3.3	
					Unknown	211.8	Trace	2.0	
					Unknown	356.5	Low	7.6	
					Unknown	404.7	Trace	1.8	
					Xylenes	436.6	Trace	0.834	
	·				Unknown	514.8	Trace	0.471	
					Xylenes	555.1	Trace	0.413	
					Unknown	651.9	Trace	0.890	
SG18	Low	10.4	PCE	258.4	Benzene	78.7	Trace	1.7	17.9
					Unknown	136.4	Trace	0.789	
					Toluene	175.7	Low	5.1	
SG19	Low	5.6	PCE	267.5	Unknown	52.1	Low	3.5	14.4
					Benzene	84.1	Trace	0.352	
					Toluene	186.2	Low	5.0	
SG20	Low	6.9	Unknown	52.3	Unknown	71.1	Trace	1.1	15.3
					Benzene	78.3	Low	3.6	
		1			TCE	102.7	Trace	0.303	
		1		İ	Unknown	140.4	Trace	0.559	
					Toluene	175.2	Low	2.9	
SG21	Trace	1.9	Unknown	54.7	DCE	48.7	Trace	0.479	3.
					Benzene	77.9	Trace	0.335	٠.
					Unknown	195.7	Trace	0.886	
SG22	ND				ND				
SG23	Low	6.3	Toluene	181.7	Unknown	49.6	Low	9.8	69.6
-		5.5		10	Benzene	77.3	Low	2.5	U3.0
					Unknown	130.4	Trace	0.699	

		GOSS COV	E LANDFILL - SC	DIL GAS ANAL	YSIS RESULTS (c	ontinued)			
	SAMPLE		INDICATOR	R.T.	ADDITIONAL	A.T.			TOTAL
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.
SG23					Unknown	139.6	Trace	0.590	
(continued)					Unknown	158.4	Trace	0.583	
					Unknown	210.6	Trace	6.1	
		1			Unknown	244.4	Trace	5.4	
		l			Unknown	352.9	Low	18.3	
					Unknown	398.2	Low	4.7	
					Unknown	510.9	Low	5.8	
					Xylenes	541.1	Low	5.2	
					Unknown	641.7	Low	3.7	
SG24	Low	8.3	Unknown	52.1	Unknown	70.5	Trace	1.0	19.13
					Benzene	77.9	Low	4.2	
					Unknown	138.0	Trace	0.551	
					Unknown	158.4	Trace	0.332	
					Toluene	173.7	Low	4.0	
					Unknown	352.0	Trace	0.382	
					Xylenes	431.0	Trace	0.368	
SG25	ND				ND				
SG26	Low	18.3	Unknown	315.5	Unknown	64.1	Low	2.9	64.5
	1				Benzene	70.5	Low	9.2	
					Unknown	85.0	Low	3.6	
					TCE	92.2	Low	7.2	
					Unknown	117.1	Low	3.3	
					Unknown	187.7	Low	4.4	
	1				Unknown	219.6	Trace	1.9	
	1				PCE	232.2	Trace	1.3	
	1	1			Xylenes	455.6	Low	2.5	
					Unknown	494.0	Low	5.1	
					Unknown	580.0	Low	3.5	
		•			Unknown	702.5	Low	1.3	
SG27	Trace	0.888	Xylenes	459.2	Benzene	70.9	Trace	0.588	4.24
			• • • • • • • • • • • • • • • • • • • •		Unknown	83.5	Trace	0.366	••••
					PCE	238.8	Trace	0.531	
					Xylenes	399.2	Trace	1.1	
					Unknown	733.9	Trace	0.763	
SG28	Low	2.1	Unknown	320.5	Unknown	44.1	Trace	1.4	9.40
					Unknown	48.5	Trace	2.0	0.10
					Benzene	71.9	Trace	0.667	
				[PCE	239.5	Trace	0.478	
					Unknown	368.2	Trace	1.2	
				[Xylenes	388.2	Trace	1.1	
						589.3			
	1				Unknown	589.3	Trace	0.457	

		GOSS COV			YSIS RESULTS (c	ontinued)			
	SAMPLE		INDICATOR	R.T.	ADDITIONAL	R.T.			TOTAL
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.
SG29	ND				ND				
SG30	Trace	1.1	TCE	93.4	Unknown	43.7	Trace	0.461	4.262
					Unknown	48.9	Trace	0.628	
					Unknown	52.5	Trace	0.505	
					Unknown	87.1	Trace	1.0	
					Unknown	102.4	Trace	0.568	
SG31	Low	3.0	Unknown	76.9	ND				3.0
SG32	Trace	0.776	Unknown	601.5	ND				0.776
SG33	ND				ND				
\$G34	Low	3.5	Unknown	73.5	Unknown	248.6	Trace	0.486	3.99
SG35	ND				ND				
SG36	Low	15.0	Benzene	72.4	Unknown	45.1	Low	2.2	38.50
					Unknown	48.8	Low	9.1	
					Unknown	65.7	Low	2.6	
					TCE	94.6	Low	4.6	
					Unknown	323.2	Trace	1.3	
					Xylenes	395.2	Low	2.8	
					Xylenes	464.0	Trace	0.371	
					Unknown	601.5	Trace	0.527	
SG37	Trace	2.0	Unknown	48.7	Unknown	44.5	Trace	1.6	5.33
	r	1			Unknown	85.0	Trace	1.4	
				1	Unknown	325.0	Trace	0.332	
SG38	ND				ND				
SG39	ND				ND				
SG40	Low	7.6	Unknown	78.1	Unknown	48.5	Trace	1.5	19.9
				·	Unknown	53.3	Low	4.2	
					Benzene	70.3	Low	3.9	
					Unknown	102.4	Low	2.7	
SG41	Low	9.5	Unknown	78.5	Unknown	48.9	Trace	1.7	22.4
					Unknown	53.5	Low	5.5	
					Benzene	71.1	Low	2.2	
					Unknown	102.4	Low	3.5	
SG42	ND				ND				
SG43	Low	6.8	Unknown	603.1	Unknown	47.7	Trace	1.7	37.4
					Unknown	78.5	Trace	1.8	••••
					Unknown	252.1	Trace	1.8	
					Unknown	336.7	Low	5.5	
					Xylenes	382.2	Low	3.3	
					Unknown	409.1	Low	4.2	
					Xylenes	459.2	Low	6.3	
					Unknown	514.8	Low	6.0	
SG44	ND				ND	317.0			

	SAMPLE		INDICATOR	R.T.	YSIS RESULTS (CO	R.T.			
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	V.	TOTAL
SG45	High	+300	Unknown	approx 330	Unknown	47.3		Vs.	Vs. 403.7
00.10	1 11811	(Offscale)	Olikilowii	approx 550	Unknown	77.9	Low Low	2.1	403.
		(Onscale)			Unknown	88.3		3.3	
					Unknown		Trace	0.997	
						130.8	Trace	0.659	
					Unknown	145.6	Low	3.6	
					Toluene	157.2	Low	3.1	
					Unknown	166.2	Low	2.6	
					Unknown	176.2	Low	3.9	
					Unknown	204.2	Low	31.8	
0010					Unknown	237.4	Moderate	51.6	
SG46	Low	31.2	Unknown	599.9	Unknown	78.1	Trace	0.539	94.12
				!	Unknown	169.7	Trace	0.641	
					Unknown	205.8	Trace	0.543	
					Unknown	249.3	Low	2.3	
					Unknown	334.9	Low	12.0	
					Xylenes	380.2	Low	15.7	
					Unknown	510.9	Low	31.2	
SG47	Low	7.0	Xylenes	400.3	Unknown	48.1	Low	2.9	49.13
					Unknown	51.9	Low	2.4	
					Unknown	56.7	Low	4.6	
					Benzene	69.5	Low	3.0	
	ŀ			j	Unknown	77.5	Low	3.9	
					Unknown	88.0	Low	2.3	
		İ			Unknown	168.2	Trace	1.1	
					Unknown	250.0	Trace	0.829	
					Unknown	333.0	Low	5.1	
					Unknown	379.2	Low	4.1	
					Xylenes	455.6	Low	4.5	
					Unknown	503.1	Low	4.9	
					Unknown	593.8	Low	2.5	
SG48	ND				ND				
SG49	Trace	1.1	Toluene	131.6	Benzene	61.7	Trace	0.864	2.42
0040	Hace	'''	10100110	101.0	TCE	80.8	Trace	0.451	2.72
SG50	Low	3.4	Benzene	61.3	TCE	81.1	Low	3.0	7.33
3030	LOW	3.4	Delizelle	61.3	Toluene	132.0	Trace	0.933	7.00
SG51	ND		***		ND	132.0	Trace		
				 					
SG52	ND	0.014	Taluana	104.0	ND ND				0.014
SG53	Trace	0.314	Toluene	134.8	ND	440 5	1.000		0.314
SG54	High	1300	Offscale	57.5	Unknown	113.5	Low	5.4	1317.5
		İ	(Unknown)		Toluene	131.6	Low	4.7	
					Unknown	153.9	Low	3.1	
					Unknown	210.0	Low	2.1	
					Unknown	289.1	Low	2.2	

		GOSS COVI	E LANDFILL - SC	IL GAS ANAL	YSIS RESULTS (c	ontinued)			
OMES I D	SAMPLE		INDICATOR	R.T.	ADDITIONAL	R.T.			TOTAL
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.
SG55	ND				ND				
SG56	Trace	2.0	Toluene	137.2	Benzene	63.7	Trace	0.568	2.568
SG57	Trace	0.571	Toluene	134.8	Benzene	62.7	Trace	0.358	0.929
SG58	ND				ND				
SG59	ND				ND				
SG60	ND				ND				
SG61	ND				ND				
SG62	ND				ND				
SG63	Trace	1.9	Toluene	134.9	Benzene	62.7	Trace	0.865	3.53
				· 1	Unknown	82.6	Trace	0.769	
SG64	Moderate	115.3	Unknown	812.9	Benzene	62.7	Trace	0.434	259.5
					Toluene	132.8	Trace	1.3	
					Unknown	155.2	Trace	0.350	
	-				PCE	192.2	Trace	1.5	
					Unknown	289.1	Low	14.3	
					Ethyl Benzene	331.3	Low	14.4	
		<u> </u>		İ	Unknown	424.5	Low	14.8	
					Unknown	464.8	Low	21.0	
					Unknown	545.5	Low	30.6	
		1			Unknown	615.9	Low	20.9	
					Unknown	665.5	Low	24.7	

NOTES:

- 1. Vs. is volt/seconds, which is an integrated area count of chromatographic peaks representing relative quantitation.
- 2. R.T. is retention time for specific compound in seconds.
- 3. Samples were classified by concentration using the following values: ND=<0.3 Vs.; Trace=0.3-2.0 Vs.; Low=2.1-50 Vs.; Moderate=50.1-300 Vs.; High=>300 Vs.

FORMER GASOLINE STATION

		FORM	IER GASOLII	VE STAT	ION - SOIL GAS	ANALY	SIS RESULTS		
SAMPLE ID	SAMPLE CONCENTRATION	Vs.	INDICATOR PEAK	R.T. (Sec.)	ADDITIONAL CONSTITUENTS	R.T. (Sec.)	CONCENTRATION	Vs.	TOTAL Vs.
SG1	ND				ND				
SG2	ND				ND				
SG3	ND				ND				
SG4	ND				ND				
SG5	ND				ND				
SG6	ND				ND				
SG7	ND				ND				
SG8	ND				ND		***		
SG9	ND				ND				
SG10	ND				ND				
SG11	Low	21.8	Toluene	132.0	Unknown	55.1	Trace	0.657	70.3

NOTES:

- 1. Vs. is volt/seconds, which is an integrated area count of chromatographic peaks representing relative quantitation.
- 2. R.T. is retention time for specific compound in seconds.
- 3. Samples were classified by concentration using the following values:

 ND = < 0.3 Vs.; Trace = 0.3 2.0 Vs.; Low = 2.1 50 Vs.; Moderate = 50.1 300 Vs.; and High = > 300 Vs.
- 4. Clay sealer (Play-Doh) was found to create unwanted peaks on GC. All these samples were affected. Clay sealer replaced with natural clay for the rest of Navy Soil Gas. These results are still usable because the clay peaks did not interfere with the chromatogram areas of interest. This was the first time these peaks due to clay at the surface were ever noticed, probably due to the shallow sampling depth possible at the former gasoline station. (See report for details.)

AREA A LANDFILL

					AS ANALYSIS RESU	LTS			
	SAMPLE		INDICATOR	R.T.	ADDITIONAL	R.T.			TOTAL
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.
SG1	ND				ND				
SG2	ND				ND				
SG3	ND				ND				
SG4	Trace	0.748	Benzene	79.1	ND				0.748
SG5	ND				ND				
SG6	ND				ND				
SG7	Trace	0.391	Benzene	80.5	ND				0.391
SG8	Trace	0.887	Benzene	80.2	ND				0.887
SG9	ND				ND				
SG10	ND				ND				
SG11	Trace	0.338	Benzene	79.9	ND				0.338
SG12	ND				ND				
SG13	ND				ND				
SG14	ND				ND				
SG15	ND				ND				
SG16	Low	6.4	Benzene	76.7	111-TCEa	69.5	Low	2.1	9.9
				'5	Toluene	168.7	Trace	1.4	3.3
SG17	ND			 	ND			1.4	
SG18	ND		ate at me an		ND ND				
SG19	ND				ND				
SG20	ND ND				ND				
SG21	ND				ND				
SG22	ND				ND ND				
SG23	ND			 	ND ND				
SG24	Low	6.4	Unknown	53.1	111-TCEa	70.3	1000		10.4
0021		0.7	CHAHOWH	33.1		70.3	Low	2.4	18.4
					Benzene TCE	101.2	Low	4.7	
SG25	ND ND				ND		Low	4.9	
SG26	ND ND				ND				
SG27	ND ND								
SG28	ND ND				ND ND				
SG29	ND ND				ND				
SG30					ND				
	ND				ND				
SG31	ND				ND				
\$G32	Trace	0.332	Benzene	79.9	ND		****		0.332
SG33	Low	2.7	Unknown	281.1	ND		***		2.7
SG34	ND				ND				
SG35	ND								
SG36	Low	33.5	Unknown	317.9	TCE	103.3	Trace	0.496	33.996
SG37	Trace	0.484	Benzene	78.7	ND				0.484
SG38	ND				ND				

		AREA	A LANDFILL - SO	L GAS ANAL	YSIS RESULTS (cor	ntinued)			
	SAMPLE		INDICATOR	R.T.	ADDITIONAL	R.T.			TOTAL
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.
SG39	ND				ND				
SG40	High	6700	Unknown	460.4	Unknown	76.3	Low	36.4	7621.
					Unknown	156.4	Low	11.3	
					Unknown	135.9	Moderate	55.4	
	1				Unknown	651.6	Moderate	170	
					Toluene	233.5	High	557	
					Benzene	94.4	Moderate	79.5	
					TCE	113.4	Low	11.9	
SG41	ND				ND				
SG42	Low	10.8	Benzene	74.7	Unknown	107.8	Low	7.8	22.
	1				Toluene	163.7	Low	2.2	
					TCE	99.1	Trace	1.5	
SG43	Moderate	107	Unknown	328.3	Unknowns	126.0	Low	5.6	143.
					Unknowns	199.2	Low	11.9	
		1			DCE	45.9	Low	4.4	
					Xylenes	I	Low	15	
SG44	ND				ND				
SG45	Moderate	151.5	Benzene	75.4	Unknown	123.6	Low	4.7	160.4
					Unknown	137.6	Low	4.2	
SG46	High	536	Unknown	335.9	Unknown	214.6	High	298	1021.
					Benzene	87.2	Moderate	97.8	
					Unknown	462.8	Low	34	
					DCE	50.3	Low	17.9	
					TCE	123.2	Low	24	
					Xylenes	401.4	Low	14	
SG47	ND				ND				
SG48	ND				ND				
SG49	High	1200	Unknown	64.5	Toluene	195.1	Low	32.9	1329.
					Unknown	322.7	Low	38.6	
	1				Unknown	371.2	Low	14.4	
					Unknown	127.3	Low	43.2	
SG50	High	329.1	Unknown	384.8	Benzene	84.5	Moderate	78	574.
					Unknown	320.2	Moderate	54.9	
					TCE	105.3	Low	9.7	
					Unknown	122.6	Low	26	
					Unknown	193.2	Low	37	
		1			Unknown	504.4	Low	39.4	
SG51	Low	9	DCE	46.6	Benzene	74.9	Trace	2.0	26.
		٦	- 	.5.5	Unknown	53.5	Low	5.5	_•.
		[Unknown	64.7	Low	3.1	
		[Unknown	88.9	Low	2.7	
					Unknown	326.8	Low	4.3	

		AREA	A LANDFILL - SOIL	GAS ANAL'	YSIS RESULTS (con	tinued)			
	SAMPLE		INDICATOR	R.T.	ADDITIONAL	R.T.			TOTAL
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.
SG52	ND				ND				
SG53	Low	37.4	Unknown	84.5	TCE	94.3	Low	14.4	138.9
					Unknown	115.3	Low	12.7	
					Unknown	130.3	Low	13.0	
		l			Unknown	184.9	Low	36.5	
0054					Unknown	319.3	Low	24.9	
SG54	High	301	Unknown	318.7	approx. DCE	43.7	Low	8.4	483
					Benzene	75.7	Low	24	
					TCE	93.1	Low	9.6	
					Toluene	156.4	Low	5.0	
	1				approx. PCE	222.6	Low	30	
0055					Xylenes	397.2	Moderate	105	
SG55	Moderate	233.4	Unknown	478.8	Unknown	319.1	Moderate	132.8	676.9
	1				Unknown	83.5	Moderate	78.9	
			ů.		Unknown	580.4	Moderate	83.7	
	1				Unknown	102.4	Low	8.2	
					Unknown	119.3	Low	18.9	
	1				Unknown	132.4	Low	6.9	
		l			Unknown	145.2	Low	4.2	
	[ŀ			Unknown	189.0	Low	36.3	
	1				Unknown	366.2	Low	17.2	
	!				Toluene	155.5	Low	5.1	
					Xylenes	391.0	Moderate	51.3	
SG56	Low	11.5	Unknown	501.8	Unknown	52.7	Low	3.3	37.6
		1			Unknown	64.3	Low	2.4	
					Unknown	190.7	Low	1.5	
]			Unknown	320.5	Low	6.5	
		1			Unknown	366.2	Low	3.4	
					approx. Benzene	77.3	Low	4.4	
					Xylenes	393.2	Low	4.6	
SG57	Moderate	78.3	Unknown	315.4	Xylenes	387.3	Moderate	56.8	182.3
		ĺ			approx. Benzene	77.1	Low	26.4	
					approx. TCE	91.1	Low	7.6	
					Toluene	156.0	Low	3.0	
					approx. PCE	237.0	Low	10.2	
SG58	Low	15.0	TCE	94.2	Unknown	62.9	Low	5.2	45.1
					Unknown	76.9	Low	4.3	
					Unknown	83.5	Low	8.6	
		1			Unknown	120.8	Low	6.7	
				İ	Unknown	135.2	Low	3.4	
		[Unknown	145.6	Low	3.1	
		1			Unknown	191.7	Low	5.1	
		Ī			Toluene	156.0	Low	2.8	
					PCE	224.4	Trace	0.897	

		AREA		GAS ANALY	SIS RESULTS (cont	tinued)			
	SAMPLE		INDICATOR	R.T.	ADDITIONAL	R.T.			TOTAL
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.
SG59	High	300	approx. Xylenes	400.3	Unknown	46.3	Low	9.6	870.3
					Unknown	49.9	Low	9.0	
					Unknown	54.9	Low	22.2	
	1				Unknown	64.7	Low	9.6	
					Unknown	79.6	Low	15.0	
					Unknown	124.4	Low	8.4	
					Unknown	326.8	Moderate	61.8	
					Unknown	371.2	Moderate	54.0	
					Unknown	474.8	Moderate	140.4	
					Unknown	505.7	Moderate	115.8	
	İ			1	Unknown	596.8	Moderate	78	
					Unknown	658.7	Low	37.8	
	1			1	approx. TCE	96.7	Trace	1.3	
					Toluene	156.8	Low	3.2	
			4		PCE	229.2	Low	4.2	
SG60	High	1000	Unknown	423.0	Unknown	63.1	Low	6.9	1239.9
				1	Unknown	86.8	Low	7.6	
		ļ		1	Unknown	105.4	Low	18.6	
					Unknown	122.2	Low	26.5	
		l			Unknown	193.7	Low	10.0	
					Unknown	325.0	Low	29.5	
	1			1 1	Unknown	500.8	Low	46.0	
	1				Unknown	595.3	Low	27.0	
					Unknown	663.8	Low	20.6	
	İ	1			Unknown	720.6	Low	33.1	
	1				approx. Benzene	78.3	Low	5.9	
					approx. TCE	95.2	Low	4.1	
		l			Toluene	155.6	Trace	1.9	
	İ				PCE	226.8	Trace	0.344	
SG61	Trace	1.2	Benzene	73.9	Unknown	84.1	Trace	0.632	
	1			1	Xylene	398.2	Trace	1.2	3.0
SG62	ND				ND				
SG63	ND		+		ND				~~~
SG64	Trace	1.0	approx. TCE	99.1	Unknown	325.9	Trace	0.510	1.51
SG65	ND				ND				
SG66	ND				ND				
SG67	Moderate	50.9	Xylenes	400.1	Unknown	55.7	Low	3.8	227.0
		1			Unknown	122.1	Low	9.9	
					Unknown	196.7	Low	7.0	
		1		1	Unknown	247.9	Low	2.4	
					Unknown	328.6	Low	23.7	
					Unknown	374.2	Low	16.2	

		AREA	A LANDFILL - SOIL	GAS ANALY	YSIS RESULTS (con	tinued)			
	SAMPLE		INDICATOR	R.T.	ADDITIONAL .	R.T.			TOTAL
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.
SG67					Unknown	477.2	Low	26.5	
continued		ĺ			Unknown	514.8	Low	27.4	
					Unknown	607.9	Low	20.5	
					Unknown	667.2	Low	12.0	
		I			Unknown	733.9	Low	13.5	
					approx. Benzone	77.2	Low	8.0	
					approx. TCE	96.1	Trace	0.316	
				1 . 1	Toluene	156.1	Low	3.5	
					approx. PCE	231.0	Low	1.4	
SG68	High	1000	approx. Xylene	424.2	Unknown	86.2	Low	34.2	1720.3
					Unknown	107.2	Low	9.9	
					Unknown	125.7	Low	34.9	
				1	Unknown	144.8	Low	4.2	
	1				Unknown	155.7	Low	5.7	
]			Unknown	198.7	Low	39.8	
		l			Unknown	251.4	Low	13.7	
	1				Unknown	329.2	Moderate	68.6	
	1			1	Unknown	513.5	Low	48.9	
		1			Unknown	609.5	Low	28.5	
					Unknown	674.0	Low	13.7	
	1				DCE	44.1	High	403.0	
		ĺ		1 1	Toluene	164.2	Low	7.4	
				1	approx. PCE	234.0	Low	7.8	
SG69	ND				ND				
SG70	Moderate	57.7	Unknown	332.5	Unknown	47.5	Low	3.7	176.8
					Unknown	52.1	Low	6.2	
					Unknown	67.3	Low	3.6	
	1				Unknown	80.9	Low	10	
		i		1	Unknown	126.8	Low	23.6	
		į.]	Unknown	145.2	Low	1.7	
					Unknown	156.8	Low	1.0	
					Unknown	167.2	Low	3.4	
					Unknown	201.3	Low	25.4	
					Unknown	235.8	Low	5.7	
					Unknown	252.1	Low	3.4	
	1				Unknown	381.2	Low	9.9	
					Unknown	419.0	Low	5.5	
					Unknown	482.3	Low	16.0	
SG71	High	971.2	Unknown	453.6	Unknown	63.1	Low	7.2	1604.5
		1			Unknown	86.6	Moderate	54.0	
					Unknown	127.1	Low	20.0	
					Unknown	194.3	Moderate	104.3	
		1			Unknown	228.1	Low	8.0	
					Unknown	328.1	Moderate	291.0	

	AREA A LANDFILL – SOIL GAS ANALYSIS RESULTS (continued)								
	SAMPLE		INDICATOR	R.T.	ADDITIONAL	R.T.			
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	
SG71					Unknown	600.0	Moderate	81.6	
continued				i	Unknown	677.4	Low	21.6	
					Unknown	737.7	Low	37.4	
				l i	approx. Toluene	155.8	Trace	1.0	
					approx. PCE	247.2	Low	7.2	
SG72	Low	2.1	Benzene	74.7	Xylene	406.9	Trace	1.3	3.4
SG73	High	>300	Unknown		Unknown	64.1	Low	5.9	·
				·	Unknown	85.2	Moderate	79.9	575.3
					Unknown	105.6	Low	10.8	
					Unknown	126.7	Moderate	51.4	
					Unknown	195.4	Moderate	103.7	
					Toluene	156.1	Trace	1.3	
		ļ			approx. PCE	233.1	Low	20.2	
SG74	Low	6.8	Xylenes	404.7	Benzene	74.5	Low	2.3	
					Unknown	68.3	Trace	0.795	11.39
					Unknown	331.3	Trace	1.5	
SG75	Trace	1.3	Xylenes	404.7	Unknown	329.5	Trace	0.681	1.981
SG76	Low	8.3	Unknown	79.6	DCE	46.1	Trace	1.1	64.1
		į			Unknown	51.1	Trace	1.2	
					Unknown	55.9	Low	3.1	
	1	ŀ		1	Unknown	64.9	Low	2.5	
					TCE	97.9	Low	2.2	
					Unknown	108.4	Low	2.3	
					Unknown	126.0	Low	4.4	
		İ			Unknown	145.2	Low	2.9	
					Unknown	157.2	Trace	1.1	
				1	Unknown	200.4	Low	2.1	
				1	Unknown	336.7	Low	7.5	
					Unknown	382.6	Low	4.9	
					approx. Xylenes	419.0	Low	3.3	
				1	Unknown	479.7	Low	4.9	
					Unknown	527.1	Low	6.6	
				1	Unknown	615.9	Low	4.2	
					Unknown	684.5	Trace	1.5	
SG77	High	389.8	Xylenes	405.2	approx. DCE	51.1	Low	15.6	566.6
55. <i>i</i>		333.3	71,101100		Unknown	64.3	Low	6.4	
					Benzene	79.2	Low	21.4	
·		1			Unknown	97.6	Low	3.6	
					Unknown	108.4	Low	5.0	
					Unknown	125.0	Low	9.6	
		1			Unknown	145.2	Low	4.9	
		1			Unknown	156.8	Low	4.0	
					Unknown	201.0	Low	17.6	
	1	1		1 1	CHRITOWII	1 201.01	L.VII		

		AREA A		GAS ANAL	SIS RESULTS (con	tinued)			
	SAMPLE		INDICATOR	R.T.	ADDITIONAL	R.T.			TOTAL
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.
SG77					PCE	251.4	Low	6.5	
continued					Unknown	336.7	Low	19.7	
		ļ			Unknown	483.6	Low	16.7	
					Unknown	521.5	Low	20.1	
					Unknown	617.5	Low	14.9	
		ļ			Unknown	682.5	Low	5.5	
SG78	Moderate	139.7	Xylenes	413.1	DCE	45.6	Low	3.1	219.4
					Unknown	49.9	Low	2.1	
					Unknown	54.4	Low	5.8	
					Unknown	65.5	Low	5.4	
					Benzene	78.3	Low	16.7	
					Unknown	97.3	Low	2.1	
	1				Unknown	108.7	Low	3.3	
					Unknown	126.4	Low	6.5	
					Unknown	145.2	Trace	1.3	
	. 1				Unknown	156.8	Trace	1.1	
					Unknown	201.6	Low	4.9	
					Unknown	336.7	Low	9.0	
	1			1	Unknown	527.1	Low	9.1	
	1			1	Unknown	619.1	Low	5.0	
				1	Unknown	688.1	Low	2.7	
		1			Unknown	747.2	Trace	1.6	
SG79	High	316.0	Unknown	439.8	Unknown	65.5	Low	5.9	804.8
				1	Benzene	79.0	Low	21.5	
	1	İ			TCE	98.2	Low	2.6	
					Unknown	109.9	Low	7.3	
					Unknown	126.5	Low	10.9	
					Unknown	145.2	Low	2.2	
					Unknown	156.4	Low	3.9	
	1				Unknown	201.7	Low	32.8	
					Unknown	238.2	Low	6.6	
					Unknown	254.9	Low	6.5	
					Unknown	331.7	Moderate	262.6	
					Unknown	526.8	Moderate	61.9	
		ł			Unknown	625.5	Low	33.3	
,					Unknown	697.1	Low	30.8	
SG80	Low	4.2	Benzene	76.5	Unknown	46.7	Trace	2.0	16.4
0000		7.5	DOTIEDIO	'0.0	Villionii.	50.9	Low	3.8	
]					67.1	Low	3.2	
						337.6	Trace	0.726	
						417.9	Low	2.1	
				1		623.9	Trace	0.393	
	.1					020.5	11aCO	0.030	

		AREA	A LANDFILL - SOIL	GAS ANAL	YSIS RESULTS (con	tinued)				
	SAMPLE		INDICATOR	R.T.	ADDITIONAL	R.T.			TOTAL	
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.	
SG81	Low	13.1	Unknown	342.1	Unknown	48.5	Low	7.1	77.3	
		1			Unknown	55.3	Low	5.8		
					Unknown	66.5	Low	5.1		
				1	Unknown	81.7	Low	6.8		
		1 1			Unknown	110.2	Trace	0.377		
					Unknown	128.4	Low	3.0		
				1	Unknown	145.2	Trace	1.3		
					Unknown	156.8	Trace	0.476		
					Unknown	205.2	Low	8.6		
					PCE	238.8	Low	2.4		
					Unknown	342.1	Low	13.1		
		1		1	Unknown	388.2	Low	5.9		
					Unknown	491.4	Low	4.4		
					Unknown	532.7	Low	4.1		
				1	Unknown	623.9	Low	2.2		
					Unknown	693.5	Trace	0.350		
SG82	High	6200	Unknown	439.1	Unknown	44.3	Moderate	248.3	7233.9	
				İ	Unknown	95.9	Moderate	113.8		
					Unknown	133.9	Moderate	69.9		
				1	Unknown	155.7	Low	9.3		
					Unknown	221.0	High	435.7		
					Unknown	618.3	Moderate	125.5		
				1	Unknown	695.3	Low	31.4		
SG83	Low	21.3	Benzene	78.2	Unknown	66.1	Low	4.9	50.4	
0000		20	20.120.10			100.0	Low	3.8		
						108.7	Low	2.7		
						128.0	Low	6.0		
						145.2	Low	3.6		
						157.2	Trace	1.0		
						168.7	Low	3.4		
						205.8	Trace	1.6		
					2	340.3	Trace	1.6		
						419.0	Trace	0.477		
SG84	High	One large of	eak, unknown constituent	s there was r	no duplicate run to separ		1	<u> </u>	>300	
SG85	Low	17.9	Xylenes	417.9	DCE	46.9	Trace	1.3	64.1	
0000		''.5	757101100		Unknown	55.9	Low	5.8		
	1				Unknown	66.1	Trace	1.8		
					Benzene	76.5	Low	2.7		
					Unknown	87.4	Low	2.7		
					TCE	100.6	Low	2.1		
					Unknown	109.6	Trace	1.6		
					Unknown	127.6	Trace	1.4		
					Unknown	145.2	Low	2.2		

		AREA A			SIS RESULTS (con				
	SAMPLE		INDICATOR	R.T.	ADDITIONAL	R.T.			TOTAL
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.
SG85					Toluene	168.2	Low	11.6	
continued					Unknown	204.0	Low	2.6	
					Unknown	340.3	Low	2.5	
					Unknown	499.2	Low	6.9	
					Unknown	623.9	Trace	1.0	5004 E
SG86	High	5000	Unknown	443.2	Unknown	66.4 96.1	Low	9.4 158.4	5361.5
					Unknown Unknown	146.7	Moderate Moderate	59.6	
					Unknown	226.8	Moderate	105.3	
					Unknown	651.9	Low	28.8	
SG87	High	10300	Unknown	479.2	approx. DCE	48.8	Low	3.4	
3007	High	10300	Olikilowii	4/3.2	Unknown	52.2	Low	2.8	
					Unknown	57.7	Low	3.4	10655
					Unknown	70.3	Low	3.3	10000
					Unknown	82.5	Low	26.5	
	ļ				approx. TCE	104.8	Trace	0.907	
	The state of the s				Unknown	117.1	Low	2.8	
	4.1				Unknown	135.1	Low	31.6	
					Unknown	156.8	Low	2.1	
					Unknown	182.2	Low	6.9	
					Unknown	220.5	Moderate	94.4	
					Unknown	260.5	Low	15.1	
					Unknown	279.0	Low	38.0	
	1				Unknown	698.6	Moderate	123.4	
SG88	High	6600	Unknown	488.7	Unknown	49.5	Trace	2.0	6904.6
					Unknown	56.8	Low	10.6	
		ļ		1	Unknown	71.5	Low	2.9	
					Unknown	88.3	Low	7.4	
		ļ			Unknown	108.4	Trace	1.3	
					Unknown	121.2	Trace	1.8	
		1			Unknown	139.5	Low	23.4	
		ł			Unknown	157.2	Low	3.0	
	1	ł		1	Unknown	190.6	Moderate	76.4	
		ľ		1 1	Unknown	226.8	Moderate	55.1	
	1	ļ		1	Unknown	279.9	Moderate	120.7	
SG89	High	858.1	Unknown	452.9	Unknown	52.1	Low	18.5	1075
		1			Unknown	138.1	Low	18.5	
					Unknown	186.7	Low	13.0	
					Unknown	225.4	Low	34.6	
					Unknown	289.1	Low	13.5	
					Unknown	379.2	Low	34.4	
					Unknown	555.1	Low	28.4	
					Unknown	590.8	Low	22.9	
					Unknown	698.9	Low	33.1	

	SAMPLE		INDICATOR	R.T.	YSIS RESULTS (cont ADDITIONAL	A.T.			TOTAL
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.
SG90	Moderate	96.6	Xylenes	406.1	approx. DCE	43.4	Moderate	187.5	581.2
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Unknown	83.2	Low	26.1	001
		Ì			approx. TCE	96.4	Low	3.5	
					Unknown	106.6	Low	10.4	
		1		1 1	Unknown	124.1	Low	24.2	
					Unknown	197.1	Low	38.1	
					PCE	248.6	Low	6.8	
					Unknown	326.6	Moderate	65.5	
				[Unknown	474.7	Low	47.7	
					Unknown	516.6	Moderate	50.7	
					Unknown	612.7	Low	24.4	
SG91	High	3100	Unknown	378.6	approx. DCE	43.9	High	341.7	3756.2
					Unknown	87.2	moderate	61.8	
					Unknown	109.5	Low	10.1	
					Unknown	127.9	Low	24.7	
	1	i		1	Toluene	170.2	Low	11.1	
		+			Unknown	202.2	Moderate	59.6	
	1				Unknown	240.9	Low	6.5	
	1			1	Unknown	260.5	Low	15.5	
	1				Unknown	497.7	Moderate	51.3	
		1			Unknown	535.5	Low	32.8	
	ļ				Unknown	641.7	Low	41.1	
SG92	Moderate	239.7	Unknown	519.0	Unknown	84.8	Low	32.2	560.3
	1				TCE	99.7	Low	4.5	
					Unknown	110.1	Low	13.2	
	1	1			Unknown	127.3	Low	14.2	
	1			1	Toluene	169.7	Trace	0.536	
					Unknown	204.1	Low	19.5	
	1				PÇE	241.6	Trace	0.485	
				1 1	Unknown	339.4	Low	38.2	
					Unknown	394.2	Low	14.1	
					Xylenes	418.7	Moderate	57.3	
	1]	Unknown	627.4	Moderate	109.6	
					Unknown	709.7	Low	16.8	
SG93	Trace	1.1	DCE	48.5	Benzene	75.9	Trace	0.624	2.2
,					Toluene	171.7	Trace	0.485	
SG94	Trace	0.712	Unknown	85.6	Unknown	53.1	Trace	0.457	1.9
			•	55.6	Unknown	145.2	Trace	0.694	

70.71		AHEA A			SIS RESULTS (cont				
	SAMPLE		INDICATOR	R.T.	ADDITIONAL	A.T.			TOTAL
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.
SG95	Low	36.6	Benzene	79.4	Unknown	63.7	Low	5.8	1(
	1				TCE	96	Low	9.3	
					Unknown	124	Low	5.3	
					Unknown	137.2	Low	2.5	
	1				Unknown	145.2	Trace	2.0	
					Unknown	157.2	Low	3.3	
					Toluene	175.2	Trace	1.2	
					Unknown	200.4	Low	11.7	
					Unknown	235.8	Low	4.8	
					Unknown	342.1	Low	9.7	
					Unknown	390.2	Low	2.9	
	1]			Unknown	496.6	Low	2.2	
	1				Unknown	538.3	Low	2.2	
					Unknown	631.9	Trace	1.5	
SG96	Trace	1.6	Toluene	167.7	DCE	45.7	Trace	1.0	
0,000					Benzene	74.1	Trace	0.602	3
					Unknown	145.2	Trace	0.560	
SG97	Trace	0.888	DCE	46.3	Unknown	145.2	Trace	0.441	1
SG98	Trace	1.8	Unkown	180.7	DCE	42.3	Trace	1.2	6
0000	1.000				Unknown	50.9	Trace	0.799	
	1				approx. Benzene	81.4	Trace	0.707	
					Unknown	144.8	Trace	1.4	
					Unknown	158.8	Trace	0.338	
SG99	Low	3.9	DCE	42.9	Unknown	51.5	Low	4.7	13
0033	2011	0.0	502	,=.0	Unknown	82.6	Trace	0.541	
					Unknown	182.7	Trace	0.684	
					Unknown	217.2	Trace	0.769	
					Unknown	358.3	Low	1.7	
					Unknown	513.5	Trace	0.650	
					Unknown	646.8	Trace	0.777	
SG100	Low	5.7	DCE	46.5	Benzene	75.3	Trace	2.0	14
30100	Low	5.7	DOL	10.5	Unknown	131.2		0.707	•
					Unknown	145.2	Trace	0.801	
					Toluene	166.2	Low	4.7	
					Unknown	492.7	Trace	0.561	
00101		0.054	חסר	46.4		73.9	Trace	0.802	2.
SG101	Trace	0.951	DCE	46.1	Benzene	145.2	1	0.802	٤.
			T -1		Unknown		Trace	0.466	1
SG102	Trace	0.947	Toluene	158.0	Unknown	127.6		0.591	•
					Unknown	422.3	Trace	0.591	

		AREA	A LANDFILL - SOII	GAS ANAL	YSIS RESULTS (con	tinued)			
	SAMPLE		INDICATOR	R.T.	ADDITIONAL	R.T.			TOTAL
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.
SG103	Low	24.6	Unknown	541.1	DCE	45	Trace	1.6	171.3
					Benzene	75.5	Low	10.5	
				1 1	TCE	96.4	Trace	0.311	
					Unknown	124.4	Low	4.2	
	1				Toluene	158.4	Trace	1.8	
				1	Unknown	200.4	Low	6.2	
				1	PCE	236.4	Low	1.3	
					Unknown	341.2	Low	19.0	
				1	Unknown	391.2	Low	10.8	
				1 1	Xylenes	423.4	Low	15.1	
					Unknown	499.2	Low	20.1	
					Unknown	541.1	Low	24.6	
		į.			Unknown	635.1	Low	22.2	
					Unknown	704.3	Low	9.0	
SG104	Low	6.7	Unknown	247.9	DEC	45.7	Trace	0.605	8.05
			- , , , , , , , , , , , , , , , , , , ,		Unknown	145.2	Trace	0.746	
SG105	Moderate	148.0	Unknown	328.7	approx. DCE	49.0	Low	15.9	336.9
					Benzene	75.7	Low	14.5	000.0
					TCE	96.1	Low	2.4	
					Unknown	122.1	Low	13.9	
					Toluene	157.6	Low	3.7	
				1	Unknown	198.3	Low	25.5	
					Unknown	235.8	Low	5.0	
	1	}		1	approx. PCE	252.8	Low	3.8	
					Unknown	389.2	Low	12.8	
					Xylenes	416.9	Moderate	56.9	
	1				Unknown	496.6	Low	11.8	
	1	1			Unknown	539.7	Low	14.1	
					Unknown	635.1	Low	8.6	
SG106	High	709.2	Xylenes	432.0	Unknown	64.3	Low	4.6	929.1
30100	riigii	709.2	Aylelles	432.0	Benzene	77.3	Low	23.6	323. I
	1				TCE	96.7	Low	3.1	
		1		1		106.9	Low	5.1	
		-			Unknown		1	16.2	
					Unknown	122.8	Low		
		[Toluene	157.6	Low	7.5	
		1		1 1	Unknown	199.4	Low	32.1	
		1			Unknown	237.0	Low	6.6	
					Unknown	254.9	Low	7.7	
]			Unknown	338.7	Moderate	51.8	
		1		1 1	Unknown	539.7	Low	29.2	
					Unknown	641.7	Low	32.4	

		AREA A	LANDFILL - SOI	L GAS ANALY	SIS RESULTS (con	tinued)			
	SAMPLE		INDICATOR	R.T.	ADDITIONAL	R.T.			TOTAL
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.
SG107	Low	20.6	Xylenes	420.1	approx. DCE	48.7	Low	5.4	43.1
	1				Benzene	74.9	Low	2.2	
					Unknown	124.8	Low	3.0	
	1				Unknown	145.2	Low	2.1	
					Toluene	158	Trace	1.5	
					Unknown	200.4	Low	2.2	
					Unknown	339.4	Low	6.1	
SG108	high	322.1	Unknown	505.7	Unknown	53.6	Low	18.9	715.9
					Benzene	78.1	Low	3.3	
	1				TCE	100.6	Low	2.3	
	.				Toluene	170.7	Trace	1.6	
					Unknown	204.8	Low	30.9	
	1				Unknown	240.9	Low	10.4	
					Unknown	343.9	Moderate	153.9	
	1				Xylenes	406.4	Moderate	105.7	
					Unknown	623.1	Low	45.8	
					Unknown	700.7	Low	21.0	
SG109	Low	5.0	DCE	46.7	Benzene	77.1	Trace	0.698	5.698
SG110	Low	2.6	DCE	47.3	Unknown	136.8	Trace	0.476	3.076
SG111	Trace	0.943	Benzene	78.3	Unknown	136	Trace	0.490	1.433
SG112	Low	5.3	Unknown	351.1	DCE	48.5	Trace	0.686	30.9
					Unknown	57.5	Trace	0.626	
	1				Unknown	68.3	Trace	0.303	
					Benzene	84.4	Trace	1.1	
		1			TCE	102.1	Trace	1.1	
		1			Unknown	132.8	Low	4.8	
					Unknown	145.2	Trace	0.903	
					Unknown	210.6	Trace	1.6	
					Unknown	398.2	Trace	2.0	
					Xylenes	427.8	Low	5.1	
	,	ĺ			Unknown	510.9	Low	3.2	
	·				Unknown	543.9	Low	2.6	
					Unknown	641.7	Trace	1.6	
SG113	Trace	0.627	Unknown	732.6	DCE	47.7	Trace	0.358	0.98
SG114	Low	3.7	DCE	48.5	Benzene	79.9	Trace	1.9	6.273
JG 1 14	1077	5. /		.5.5	Unknown	137.6	Trace	0.358	
					Unknown	158.0	Trace	0.315	

		AREA A	LANDFILL - SOII	GAS ANALY	SIS RESULTS (con				
	SAMPLE		INDICATOR	R.T.	ADDITIONAL	R.T.			TOTAL
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.
SG115	Low	29.1	Unknown	546.7	approx. DCE	49.3	Low	13.4	223
					Unknown	56.2	Low	4.7	
					Benzene	83.8	Low	2.7	
				1	TCE	101.5	Low	2.1	
					Unknown	130.8	Low	6.9	
					Toluene	172.7	Low	7.9	
		İ			Unknown	210	Low	19.4	
	İ				PCE	245.8	Low	9.9	
					Unknown	350.2	Low	31.0	
					Unknown	399.2	Low	11.3	
					Xylenes	430	Low	25.3	
]	Unknown	504.4	Low	27.8	
		-		1 1	Unknown	643.4	Low	24.3	
					Unknown	711.5	Low	7.2	
SG116	Low	9.7	Toluene	175.2	Unknown	51.5	Low	6.1	24.6
					Unknown	71.7	Low	1.7	
		İ			Benzene	79.3	Low	4.8	
		İ			TCE	103.6	Trace	0.315	
	1	1			Unknown	135.2	Trace	0.493	
	1				Unknown	145.6	Trace	0.357	
					Unknown	352	Trace	0.413	
					Unknown	645.1	Trace	0.750	
SG117	Trace	1.8	DCE	46.1	Unknown	137.2	Trace	0.373	3.9
					Unknown	161.7	Trace	1.7	
SG118	Trace	0.657	Benzene	79.3	Unknown	136	Trace	0.418	1.08
SG119	Trace	0.551	Unknown	134.4	Benzene	78.1	Trace	0.323	1.4
	1			1	Unknown	134.4	Trace	0.551	
SG120	Low	8.2	Unknown	350.2	DCE	48.3	Low	2.9	56.3
					Benzene	78.7	Trace	0.376	
					Unknown	131.2	Trace	1.3	
					Unknown	145.2	Trace	0.420	
				1	Toluene	173.7	Low	7.5	
					Unknown	210	Trace	1.2	
					Unknown	350.2	Low	8.2	
					Unknown	398.2	Low	3.5	
		1			Xylenes	428.9	Low	5.7	
					Unknown	505.7	Low	7.6	
					Unknown	545.3	Low	4.7	
					Unknown	650.2	Low	4.7	
SG121	Moderate	141.5	Unknown	453.2	Unknown	51	Low	8.7	277
·					Unknown	87.7	Low	4.2	
	1			1	Unknown	145.6	Low	2.5	
					Unknown	191.2	Low	10.3	
					Unknown	373.2	Low	8.2	

	AREA A LANDFILL - SOIL GAS ANLAYSIS RESULTS (continued)								
TOTAL			R.T.	ADDITIONAL	A.T.	INDICATOR		SAMPLE	
Vs.	Vs.	CONCENTRATION	(Sec.)	CONSTITUENTS	(Sec.)	PEAK	Vs.	CONCENTRATION	SAMPLE I.D.
	16.8	Low	421.2	Xylenes					SG121
	82.0	Moderate	535.9	Unknown]	continued
	2.8	Low	675.7	Unknown					
13	2.7	Low	50.7	approx. DCE	41.1	Unknown	2.9	Low	SG122
	0.445	Trace	79.6	Benzene				1	
	1.2	Trace	145.2	Unknown				1	
	1.2	Trace	177.2	Toluene					
İ	1.3	Trace	352.9	Unknown				l	
i	1.5	Trace	401.4	Unknown]				
	1.7	Trace	432.2	Unknown					
İ	0.706	Trace	651.9	Unknown				1	
1.6	0.355	Trace	138.8	Unknown	48.3	approx. DCE	0.855	Trace	SG123
İ	0.316	Trace	145.2	Unknown			0.000		00.100
	0.323	Trace	158.4	Unknown					
3	0.799	Trace	78.7	Benzene	50.7	Unknown	2.4	Low	\$G124
				ND	48.1	Unknown	0.815	Trace	SG125
				ND		ND			SG126
2.	0.442	Trace	78.9	Benzene	49.0	Unknown	2.5	Low	SG127
3.	0.657	Trace	78.5	Benzene	50.3	Unknown	2.9	Low	SG128
13	1.3	Trace	76.5	Benzene	52.1	Unknown	4.9	Low	SG129
	1.4	Trace	170.7	Toluene	02	O I I I I I I I I I I I I I I I I I I I	7.0	1	3G123
l	2.8	low	341.2	Unknown					
	0.916	Trace	387.2	Unknown					
l	1.8	Trace	416.8	Xvlenes				· .	
7	1.1	Trace	48.3	Unknown	420.1	Xylenes	2.2	Low	SG130
İ	2.1	Low	52.3	Unknown	1	Aylonoo		20**	30130
İ	0.367	Trace	70.3	Unknown				1	
	1.4	Trace	77.3	approx. Benzene					
l	0.366	Trace	344.8	Unknown					
2.	0.670	Trace	344.8	Unknown	78.1	approx. Benzene	1.3	Troop	SG131
	0.863	Trace	417.9	Xylenes	/0.1	approx. Delizelle	1.3	Trace	50131
1			417.3	ND	345.7	Hakaawa			00400
3	1.2	Trace	48.1	Unknown	345.7	Unknown	1.1	Trace	SG132
,	445.8	Trace	78.3	•	345.7	Unknown	1.3	Trace	SG133
l	0.779	Trace	421.2	Benzene					
	1.0			Unknown				· · · · · · · · · · · · · · · · · · ·	
"	1.0	Trace	50.7	Unknown	343.9	Unknown	1.3	Trace	SG134
8.		Trace	419	Unknown					
0.	1.8	Trace	50.9	Unknown	417.9	Xylenes	2.7	Low	SG135
1	0.574	Trace	77.5	Benzene				: :	
1	0.654	Trace	111.1	Unknown	1 1				
L	2.3	Low	343	Unknown]		

AREA A LANDFILL - SOIL GAS ANALYSIS RESULTS (continued)											
	SAMPLE		INDICATOR	R.T.	ADDITIONAL	R.T.			TOTAL		
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.		
SG136	Trace	1.0	Unknown	342.1	Unknown	181.2	Trace	0.353	2.206		
		ļ		1	Xylenes	416.8	Trace	0.853			
SG137	Low	6.2	Unknown	51.9	Unknown	70.1	Trace	1.4	12.5		
]	J]	Benzene	77.5	Low	2.8			
	1			1	Unknown	343	Trace	1.1			
				<u> </u>	Xylenes	416.8	Trace	1.6			
SG138	Low	2.3	Benzene	77.9	Unknown	51.9	Trace	1.3	5.75		
				1	Unknown	344.8	Trace	0.951			
					Xylenes	419	Trace	1.2			
SG139	Low	3.3	Benzene	76.1	Unknown	51.5	Low	2.8	10.61		
	ļ			1 1	Unknown	67.3	Low	2.1			
		1		1	Toluene	166.2	Trace	0.605			
					Unknown	335.8	Trace	1.8			
SG140	Trace	1.9	Unknown	52.1	Unknown	47.5	Trace	0.986	5.15		
		1			Unknown	62.1	Trace	0.609			
	·				Benzene	76.3	Trace	1.2			
					Toluene	166.7	Trace	0.451			
SG141	Trace	2.0	Benzene	76.1	Toluene	166.2	Trace	1.3	4.15		
					Unknown	332.2	Trace	0.845			
SG142	ND				ND						
SG143	Trace	1.3	Benzene	74.9	Unknown	67.1	Trace	0.344	2.37		
	ł				Toluene	158.4	Trace	0.724			
SG144	ND				ND						
SG145	ND				ND						
SG146	Trace	2.0	Unknown	50.1	Unknown	56.7	Trace	1.2	4.74		
	-				Unknown	72.9	Trace	0.990			
	1			1 1	Unknown	552.3	Trace	0.550			
SG147			ND		ND						
SG148			ND		ND	****					
SG149			ND		ND						
SG150			ND		ND						
SG151	Moderate	61.1	approx. Toluene	158.9	approx. DCE	46.9	Low	12.8	177.3		
			• •	1 1	Unknown	65.9	Low	4.3			
					approx. Benzene	80.3	Low	49.1			
				1	TCE	97.0	Low	15.2			
					Unknown	122.0	Low	2.1			
		j			Unknown	136.4	Low	5.6			
					Unknown	211.2	Low	5.1			
					Unknown	335.8	Trace	1.5			
				1	Unknown	395.2	Low	10.1			
					Unknown	470.0	Low	8.6			
					Unknown	586.3	Trace	0.896			
		•			Unknown	688.9	Trace	0.878			

	OAMBY:E				SIS RESULTS (con			F	TOTAL
	SAMPLE		INDICATOR	R.T.	ADDITIONAL	R.T.		.,	
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.
SG152	Low	5.1	Xylenes	401.4	approx. DCE	47.1	Trace	1.4	21
					Unknown	50.9	Low	3.5	
					Unknown	59.3	Low	2.3	
					Unknown	67.9	Low	2.3	
	1	ļ			Benzene	75.1	Low	4.5	
	1				Toluene	162.7	Trace	1.2	
					Unknown	474.8	Trace	1.0	
SG153	Low	3.6	Xylenes	406.9	Benzene	75.7	Trace	0.651	6.
		l			Toluene	165.2	Trace	0.724	
					Unknown	486.2	Trace	1.4	
SG154	Trace	1.9	Benzene	70.7	ND				1
SG155	Low	2.4	Benzene	70.3	ND				2
SG156	Moderate	100	Unknown	>600	approx. DCE	40.6	Low	5.5	110
					Unknown	49.5	Low	4.1	
		ŀ			~ TCE	91.3	Trace	0.309	
					Unknown	305.1	Trace	0.398	
SG157	Trace	1.0	Unknown	689	Benzene	70.3	Trace	0.879	2.
					unknown	307.5	Trace	0.532	
SG158	Low	2.3	Benzene	71.3	ND				2
SG159	Trace	1.9	Unknown	48.3	Benzene	70.9	Trace	1.4	3.
					Unknown	307.5	Trace	0.679	
SG160	Low	12.8	TCE	92.3	DCE	41.6	Low	10.1	34.
					Unknown	50	Low	7.7	
	1				Benzene	71.5	Trace	0.987	
					PCE	226.2	Trace	1.3	
					Unknown	379.2	Trace	0.629	
]	1			Unknown	691.7	Trace	0.535	

NOTES:

- 1. Vs. is volt/seconds, which is an integrated area count of chromatographic peaks representing relative quantitation.
- 2. R.T. is retention time for specific compound in seconds.
- 3. Samples were classified by concentration using the following values: ND=<0.3 Vs.; Trace=0.3-2.0 Vs.; Low=2.1-50 Vs.; Moderate=50.1-300 Vs.; and High=>300 Vs.

DEFENSE REUTILIZATION AND MARKETING OFFICE (DRMO)

DRMO - SOIL GAS ANALYSIS RESULTS											
	SAMPLE		INDICATOR	R.T.	ADDITIONAL	A.T.			TOTAL		
SAMPLE ID	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.		
SG1	Low	2.5	Benzene	78.3	Unknown	70.5	Trace	0.871	6.252		
					Toluene	172.7	Trace	0.781			
	·				PCE	252.8	Low	2.1			
SG2	Moderate	70.2	TCE	104.1	DCE	45.1	Low	2.5	87.6		
					Unknown	54.5	Low	11.4			
					PCE	254.2	Low	3.5			
SG3	Low	4.9	TCE	101.8	Unknown	54.5	Low	2.1	9.933		
					Benzene	78.1	Trace	1.7			
	:				Toluene	172.7	Trace	0.475			
	· ·				PCE	252.8	Trace	0.758			
SG4	Trace	2.0	Benzene	78.1	Toluene	170.7	Trace	1.7	3.7		
SG5	ND				ND						
SG6	Trace	0.332	Toluene	138.8	ND				0.332		
SG7	ND				ND						
SG8	Trace	1.1	TCE	87.1	Unknown	33.3	Trace	0.663	3.403		
					Benzene	66.8	Trace	0.816			
					PCE	218.0	Trace	0.823			
SG9	Trace	0.838	TCE	87.1	Benzene	66.6	Trace	0.332	1.17		
SG10	Low	2.7	DCE	45.9	Benzene	66.1	Trace	0.617	6.476		
					TCE	86.2	Trace	0.935			
					Unknown	488.8	Trace	1.4			
					Unknown	578.8	Trace	0.822			
SG11	ND				ND						
SG12	Trace	0.641	Benzene	66.3	Toluene	146.8	Trace	0.418	1.059		
SG13	Low	6.1	TCE	86.2	Benzene	65.9	Trace	0.331	6.431		
SG14	Low	24.5	PCE	220.8	Unknown	50.9	Low	22.0	63.1		
					(Probably has						
					DCE masked in						
	÷				peak)						
					TCE	86.4	Low	16.6			
SG15	Trace	0.385	Benzene	66.7	ND				0.385		
SG16	ND		****		ND						
SG17	ND				ND						
SG18	Trace	0.313	Benzene	67.1	ND				0.313		
SG19	ND				ND				**		
SG20	Trace	1.8	TCE	88.0	ND				1.8		
SG21	Low	16.6	TCE	86.5	Benzene	66.7	Trace	2.0	19.6		
					PCE	220.8	Trace	1.0			
SG22	Low	29.2	TCE	87.6	DCE	38.0	Low	3.6	48.5		
					Unknown	48.7	Low	14.6			
		}			PCE	220.8	Trace	1,1			

			DRMO - SO	IL GAS A	NALYSIS RESULT	S (continued	d)			
SAMPLE INDICATOR R.T. ADDITIONAL R.T. 1										
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.	
SG23	High	533.5	Unknown	53.3	Unknown	110.2	Low	8.8	755.68	
			(Benzene		Toluene	133.6	Low	22.0	4	
			probably		Unknown	154.8	Low	3.8		
			masked in		Unknown	167.2	Low	10.3		
			peak)		Unknown	208.4	Low	13.4		
					Unknown	261.8	Trace	0.782		
					Unknown	310.7	Low	48.2		
	'				Unknown	488.8	Low	41.4		
					Unknown	581.8	Low	37.0		
	·				Unknown	709.7	Low	23.2		
					Unknown	798.6	Low	13.3		
SG24	Low	2.3	TCE	85.6	Benzene	60.9	Trace	0.580	3.260	
					Toluene	131.2	Trace	0.380		
SG25	Low	2.9	TCE	80.5	ND				2.9	
SG26	Low	2.4	TCE	83.5	ND				2.4	
SG27	Trace	1.6	Unknown	905.7	TCE	80.8	Trace	1.0	3.0	
					Toluene	133.6	Trace	0.435		
SG28	Moderate	83.5	TCE	87.0	Benzene	65.7	Trace	2.0	85.907	
					Toluene	133.6	Trace	0.407		
SG29	Low	3.8	TCE	81.1	ND		***		3.8	
SG30	ND				ND					
SG31	ND				ND					
SG32	Low	2.4	Benzene	64.3	Toluene	136.4	Trace	0.863	5.199	
	1				Unknown	650.2	Trace	1.0		
					Unknown	709.7	Trace	0.936		
SG33	Trace	1.7	Unknown	648.5	Benzene	63.9	Trace	1.2	5.493	
					Toluene	135.2	Trace	0.483		
					Unknown	482.3	Trace	0.386		
					Unknown	532.7	Trace	0.323		
					Unknown	708.7	Trace	1.4		
SG34	Low	3.1	Benzene	63.5	Toluene	135.8	Trace	0.830	7.820	
				ľ	PCE	205.2	Trace	0.666		
					Unknown	482.3	Trace	0.723		
					Unknown	646.8	Trace	1.2		
					Unknown	713.3	Trace	1.3		
SG35	ND				ND					
SG36	ND				ND					
SG37	Trace	0.664	Toluene	136.8	Unknown	57.9	Trace	0.364	1.511	
					TCE	83.5	Trace	0.482		
SG38	Trace	1.2	TCE	83.2	ND				1.2	
SG39	ND				ND					

			DRMO - SO	IL GAS A	NALYSIS RESULT	S (continued	1)		
	SAMPLE		INDICATOR	R.T.	ADDITIONAL	R.T.			TOTAL
SAMPLE ID	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.
SG40	ND				ND		₩ ₩ ₩ ₩		
SG41	ND				ND				
SG42	ND				ND				
SG43	ND				ND				
SG44	ND				ND				
SG45	ND				ND				
SG46	ND				ND				
SG47	ND				ND				
SG48	ND				ND				
SG49	ND				ND				
SG50	ND				ND				
SG51	ND				ND				
SG52	ŅD				ND				
SG53	ND				ND				

NOTES:

- 1. Vs. is volt/seconds, which is an integrated area count of chromatographic peaks representing relative quantitation.
- 2. R.T. is retention time for specific compound in seconds.
- 3. Samples were classified by concentration using the following values: ND=<0.3 Vs.; Trace=0.3-2.0 Vs.; Low=2.1-50 Vs.; Moderate=50.1 Vs.-300 Vs.; High=> 300 Vs.
- 4. Samples SG41 through SG51 appear to have been taken with a partially blocked syringe (possible false negatives).

LOWER SUBASE

	SAMPLE		INDICATOR	R.T.	ADDITIONAL	R.T.	ag Alagoria.		TOTAL
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.
SG1	ND				ND				0.35
SG2	Trace	0.358	Benzene	63.7	ND		***		
SG3	ND				ND				563.
SG4	High	427	Unknown	85.9	Unknown	48.9	Moderate	71.1	
			(Benzene most		Unknown	118.7	Low	12.0	
			likely masked		Toluene	137.7	Low	28.7	
			in peak)		Unknown	152.7	Low	11.1	
					Unknown	167.7	Low	9.5	
					Unknown	219.0	Low	3.8	
SG5	Low	2.1	Unknown	53.1	Benzene	65.1	Trace	1.7	3
SG6	ND				ND				
SG7	Trace	1.9	Benzene	66.3	ND				1
SG8	ND				ND ND				
SG9	Low	3.3	Toluene	140.0	Unknown	70.9	Trace	0.335	6.3
		0.0	TOTAGE	170.0	Unknown	302.7	Trace	0.935	0.,
					Xylenes	375.2	Trace	0.457	
					Xylenes	450.8	Trace	0.457	
	<i>i</i>				Unknown	487.5	i I	0.713	
SG10	ND				ND		Trace		
SG10 SG11		4.0	Unknown	298.7	Unknown	84.1	Trace		9.
3011	Low	4.0	Ulikilowii	290.7	Toluene	138.8	Trace	1.6 0.746	9.
					Unknown	218.4	Trace	0.748	
							l		
					Ethyl Benzene	345.7	Trace	1.3	
					Xylenes	441.2	Trace	0.813	
					Unknown	481.0	Trace	0.396	
SG12	ND				ND				
SG13	ND				ND				
SG14	ND				ND				
SG15	ND				ND				
SG16	Moderate	63.5	Unknown	25.0	Unknown	42.5	Low	15.1	200
					Benzene	54.6	Low	6.1	1
	-				Unknown	75.1	Low	42.5	
					Unknown	105.5	Low	30.3	
	•	i			Toluene	129.9	Low	8.1	
					Unknown	143.2	Low	3.4	
					Unknown	156.0	Low	12.6	
				:	Unknown	195.2	Low	2.6	
					Unknown	209.4	Trace	2.0	
					Unknown	291.5	Low	10.4	
					Ethyl Benzene	334.9	Low	3.8	
					Unknown	430.0	Trace	0.408	
					Xylenes	468.8	Trace	0.474	
	,				Unknown	552.3	Trace	0.953	
					Unknown	700.7	Low	2.3	
	1]			Unknown	778.6	Low	2.1	1

	0.445.5	LOVIL			S RESULTS (contin		<u> </u>		TOTAL
SAMPLE I.D.	SAMPLE CONCENTRATION	Vs.	INDICATOR PEAK	R.T. (Sec.)	ADDITIONAL CONSTITUENTS	R.T. (Sec.)	CONCENTRATION	Vs.	TOTAL Vs.
SG17	ND				ND				
SG18	Low	13.4	Unknown	288.3	ND				13.
SG19	ND ND				ND ND				
SG20	Low	5.2	Unknown	28.0	Unknown	44.3	Trace	0.567	7.5
OGZU	20**	J	Onjanown	1 20.0	Benzene	64.1	Trace	1.2	
		i			Toluene	136.4	Trace	0.543	
SG21	Trace	0.504	Benzene	63.7	ND	100.4			0.50
SG22	ND ND		501120110		ND ND				
SG23	Trace	0.343	Benzene	64.7	ND		****		0.34
SG24	Trace	0.668	Benzene	64.9	Toluene	138.4	Trace	0.651	1.3
SG25	ND ND	0.000	D01120110		ND	100.4			
SG26	Moderate	50	Unknown	821.7	Unknown	45.1	Trace	0.357	162
3020	INIOGOLATO	30	CHRIDAL	UZ1.7	Benzene	65.3	Trace	1.6	
	•				Unknown	107.5	Trace	1.7	
	1				Unknown	167.7	Trace	1.4	
	1					199.8	Trace	0.922	
		ļ			Unknown		Trace	0.508	
					Unknown	214.8	i i	19.8	
					Unknown	295.5	Low		
		1			Ethyl Benzene	337.6	Low	7.6	
					Xylenes	375.2	Low	4.4	
	1	·			Xylenes	431.1	Low	15.9	
	ŀ				Unknown	471.2	Low	15.8	
					Unknown	559.3	Low	24.7	
					Unknown	682.7	Low	18.1	
SG27	Low	2.3	Unknown	524.3	Unknown	100.0	Trace	2.0	4
SG28	Low	3.2	Benzene	65.3	Unknown	293.9	Low	2.3	5
SG29 .	Trace	1.1	Unknown	297.1	ND				1
SG30	Low	9.6	Unknown	568.3	Benzene	65.3	Trace	1.7	38
					Unknown	107.5	Trace	0.423	
	1	ŀ			Toluene	140.0	Trace	0.856	
					Unknown	218.4	Trace	0.546	
					Unknown	293.9	Low	3.3	
	·	Ì			Ethyl Benzene	340.3	Trace	1.3	
		l			Xylenes	366.2	Low	3.7	
					Xylenes	440.0	Low	5.7	
					Unknown	473.6	Low	5.1	
					Unknown	689.9	Low	6.7	
SG31	ND				ND				
\$G32	ND ND		****		ND				- -
\$G33	Low	7.0	Unknown	538.3	Toluene	130.8	Trace	0.837	3
3033	LOW	/."	Olimionii.		Unknown	276.6		4.7	
	•				Ethyl Benzene	321.4		5.4	1
					Xylenes	409.1	1	6.8	
				1	Unknown	443.6	1	5.9	I

LOWER BASE – SOIL GAS ANALYSIS RESULTS (continued) SAMPLE INDICATOR R.T. ADDITIONAL R.T. TOTAL													
	The commence of the commence o		INDICATOR	R.T.	ADDITIONAL	R.T.			TOTAL				
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.				
SG34	ND				ND								
SG35	ND				ND								
SG36	ND				ND								
SG37	ND				ND				-				
SG38	ND				ND				-				
SG39	Trace	1.1	Toluene	140.4	ND								
SG40	ND				ND				-				
SG41	ND				ND				-				
SG42	ND				ND								
SG43	ND				ND								
SG44	ND				ND				-				
SG45	ND				ND				_				
SG46	ND				ND				-				
SG47	ND				ND				-				
SG48	ND				ND								
SG49	Low	3.2	TCE	84.7	ND								
SG50	Low	9.0	TCE	83.3	ND								
SG51	ND				ND								
SG52	ND				ND								
SG53	Trace	1.1	TCE	77.7	ND								
SG54	ND				ND								
SG55	ND				ND				•				
SG56	ND				ND								
SG57	Trace	0.785	TCE	77.7	ND				0				
SG58	ND				ND								
SG59	ND				ND								
SG60	Trace	0.954	Benzene	60.7	ND								
SG61	ND				ND								
SG62	ND				ND								
SG63	ND				ND								
SG64	ND				ND								
SG65	ND		***		ND								
SG66	ND				ND								
SG67	ND				ND		+						
SG68	ND				ND								
SG69	ND				ND								
SG70	Trace	1.3	Unknown	43.1	ND								
SG71	Trace	0.410	Toluene	135.6	Unknown	29.8	Trace	0.379	(
SG72	Trace	1.6	Unknown	40.1	ND				<u> </u>				
SG73	Trace	1.8	Unknown	43.1	Benzene	62.9	Trace	0.815	-				
00.0	1.400				Toluene	135.6	1	0.469					
SG74	ND				ND								

		LOW	ER BASE - SOIL G	AS ANALYSI	S RESULTS (conti	nued)			
	SAMPLE		INDICATOR	R.T.	ADDITIONAL	R.T.			TOTAL
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.
SG75	Low	4.7	Unknown	722.5	Benzene	62.7	Trace	0.730	8.4
	·	Ī			Toluene	134.0	Low	2.1	
					Unknown	292.3	Trace	0.432	
					Xylenes	441.2	Trace	0.433	
SG76	ND				ND				
SG77	Low	2.6	Unknown	47.5	Benzene	61.3	Trace	1.5	4.441
					Toluene	131.6	Trace	0.341	
SG78	ND				ND				
SG79	ND				ND				
SG80	ND			****	ND		****		
SG81	Low	7.0	TCE	80.5	ND				7
SG82	Low	7.1	TCE	81.4	Benzene	62.7	Trace	0.505	7.605
SG83	Low	10.3	TCE	80.6	Unknown	44.1	Trace	0.365	16.1
					Toluene	134.8	Low	3.6	
					Unknown	206.4	Trace	0.321	
					Unknown	283.5	Trace	1.0	
					Ethylbenzene	333.1	Trace	0.503	
SG84	Low	31.5	TCE	82.7	ND				31.5
SG85	Low	7.1	TCE	82.9	ND				7.1
SG86	Low	3.2	TCE	82.6	ND				3.2
SG87	High	921.0	Unknown	52.0	Toluene	135.3	Low	9.8	932.1
			(Benzene		Xylenes	364.2	Trace	1.3	
			probably masked	•					
			in peak)						
SG88	Low	3.2	TCE	82.3	Benzene	63.1	Trace	0.421	3.621
SG89	Trace	1.9	TCE	82.6	Benzene	63.5	Trace	0.624	2.524
SG90	Low	3.8	TCE	82.9	ND				3.0
SG91	Trace	1.8	TCE	83.8	ND				1.0
SG92	Low	2.9	TCE	82.8	Benzene	63.3	Trace	1.9	5.0
					Toluene	135.6	Trace	0.766	
SG93	ND				ND				
SG94	ND				ND				
SG95	ND				ND				
SG96	Low	2.2	Toluene	138.8	Unknown	43.3	Trace	0.616	6.7
					Unknown	47.5	Trace	1.3	
					Benzene	58.1	Trace	0.624	
					Unknown	75.9	Trace	2.0	
SG97	ND				ND				
SG98	ND				ND				
SG99	ND				ND				<u></u>

		LOWE	R BASE - SOIL G	AS ANALYSI	S RESULTS (contin	ued)	· · · · · · · · · · · · · · · · · · ·		
	SAMPLE		INDICATOR	A.T.	ADDITIONAL	R.T.			TOTAL
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.
SG100	Moderate	124.1	Unknown	120.0	Unknown	20.9	Low	20.4	416.6
					Unknown	28.3	Low	2.8	
					Unknown	33.4	Low	2.3	
					Unknown	41.5	Low	13.0	
		İ			Unknown	56.2	Low	8.8	
					Unknown	79.0	Moderate	90.0	
					Toluene	146.2	Low	8.0	
					Unknown	169.3	Low	30. 3	
					Unknown	198.7	Low	28.7	
					Unknown	303.2	Moderate	85.4	
					Unknown	491.4	Low	2.1	
					Unknown	577.3	Trace	0.700	
SG101	ND		***		ND				
SG102	ND				ND	***			
SG103	ND				ND				
SG104	ND				ND				
SG105	ND				ND				
SG106	ND				ND				
SG107	Low	7.6	Xylenes	456.8	Benzene	62.5	Trace	1.4	22.3
		į			TCE	81.1	Trace	0.444	
					Toluene	133.6	Low	3.4	
					Unknown	297.6	Low	2.2	
		l			Xylenes	376.2	Low	7.3	
SG108	ND				ND				
SG109	Low	12.2	Xylenes	377.2	Benzene	62.5	Low	3.4	38.0
					Toluene	134.0	Low	5.9	
		1			Unknown	297.9	Trace	0.676	
					Xylenes	458.0	Low	12.2	
				1	Unknown	718.7	Trace	0.435	
				1	Unknown	889.6	Low	3.2	
SG110	Trace	0.681	Benzene	62.3	Toluene	134.0	Trace	0.466	1.147
SG111	ND				ND				
SG112	Trace	0.270	TCE	86.2	ND				0.270
SG113	Low	3.6	Unknown	309.9	Benzene	66.3	Trace	0.779	9.8
					TCE	86.5	Trace	1.0	
					Unknown	488.8	Trace	2.0	
		İ			Unknown	584.8	Trace	0.483	
		1			Unknown	730.1	Trace	0.305	
					Unknown	880.4	Trace	1.6	
SG114	Low	2.3	Toluene	142.0	Unknown	77.9	Trace	1.5	5.7
					Unknown	96.1	Trace	1.9	
SG115	Trace	1.1	TCE	86.2	Benzene	66.3	Trace	0.481	1.581

		LOWE	R BASE - SOIL G	AS ANALYSI	S RESULTS (contin	lued)			
	SAMPLE	alian in the second	INDICATOR	R.T.	ADDITIONAL	R.T.			TOTAL
SAMPLE I.D.	CONCENTRATION	Vs.	PEAK	(Sec.)	CONSTITUENTS	(Sec.)	CONCENTRATION	Vs.	Vs.
\$G116	ND				ND				
SG117	ND				ND				
SG118	Trace	0.371	Benzene	66.6	ND				0.371
SG119	ND				ND				
SG120	ND				ND				
SG121	Trace	0.891	TCE	74.3	ND				0.891
SG122	ND				ND				
SG123	Trace	0.579	Benzene	58.5	Toluene	125.6	Trace	0.464	1.0
SG124	ND				ND				
SG125	ND				ND				
SG126	ND				ND				
SG127	ND				ND				

NOTES:

- Vs. is volt/seconds, which is an integrated area count of chromatographic peaks representing relative quantitation.
 R.T. is retention time for specific compound in seconds.
 Samples were classified by concentration using the following values: ND=<0.3 Vs.; Trace=0.3-2.0 Vs.; Low=2.1-50 Vs.; Moderate=50.1-300 Vs.; High = > 300 Vs.

APPENDIX B

TEST BORING LOGS AND MONITORING WELL CONSTRUCTION DETAILS

HYDRAULIC CONDUCTIVITY DATA

TEST BORING LOGS AND MONITORING WELL CONSTRUCTION DETAILS

TORPEDO SHOP

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: TORPEDO SHOPS DATE STARTED: 08/09/90 DATA COMPLETED: 08/09/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 48.6 PROTECTIVE CASING ELEVATION: -

WELL ELEVATION: -WATER LEVEL: -DATUM: SUBASE

WEATHER: 75', PARTLY CLOUDY, HUMID

INSPECTOR: MICHAEL NEJDL CHECKED BY: ERIK NESS

	T		· · · · · · · · · · · · · · · · · · ·			·					1 1			
		'ERY		SOIL DESCRIPTION	(FT.)	V:	ISI	UAL FAM			ANALYSIS	06Y	(FT.)	CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)]	RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN		NONE	STAIN	SHEEN	⊟ *	RAD.	SAMPLE AN	LITHOLOGY	DEPTH	
					0-7								0.0	
0~2	3 4 4 3	100	0.0	Dark brown, fine SAND and SILT, trace roots, damp, TOP SOIL Light brown, fine SAND and SILT,					0	50			1.5	
2-4	4 5 5 6	80	0.1	Brown, fine SAND and SILT, moist					0	40				
4-6	6 7 7 8	90	0.4		5-				0	40				
6-8	17 33 55 55	100	0.1	Red-brown, fine to medium SAND and GRAVEL, wet					0	40		0.00.0	7.0	
8-10	45 60 100/6	60	0.0	Brown, coarse SAND and GRAVEL, trace cobbles, wet	10-				0	45				
10-12	32 66 80 90	100	0.0	Brown, coarse SAND and GRAVEL, wet					0	40		0.00		
12-14	85 100/2	35	0.0	AUGER REFUSAL AT 12.7 feet					0	40		0 0	12.7	
					15-									
					20-									
		-	<u> </u>	<u>LANTIC</u>	F	a	ae	1	of	1				

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: TORPEDO SHOPS DATE STARTED: 08/09/90 DATA COMPLETED: 08/09/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 48.8
PROTECTIVE CASING ELEVATION: WELL ELEVATION: -

WATER LEVEL: - DATUM: SUBASE

WEATHER: 78', PARTLY CLOUDY, HUMID

Page 1 of 1

INSPECTOR: MICHAEL NEJDL CHECKED BY: ERIK NESS

WELL CONSTRUCTION ANAL YSIS * RECOVERY VISIUAL SOIL DESCRIPTION (FT.) (FT.) LITHOLOGY CONTAM. SPLIT DEPTH STAIN SHEEN HEAVY KAD. SAMPLE color, SOIL, admixture, moisture, DEPTH BLOWS PER 6* HNU (ft) other notes, ORIGIN (ppm) 0-Dark brown, fine SAND and SILT, trace roots, damp, TOP SOIL 0.0 2 4 0-2 85 0.2 0.75 0 45 Brown, fine to medium SAND, some 5 5 silt, trace gravel, damp 17 38 2-4 40 0.2 0 60 31 19 ંં o∵o: Olive green, fine SAND and SILT, 4.0 trace gravel, moist 34 17 4-6 60 0.0 5-60 0 19 27 Olive green, medium SAND some gravel, grading to red color, wet 6.0 54 59 6-8 60 NA 0 80 100/3 7.3 AUGER REFUSAL AT 7.3 feet 10-15 20

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: TORPEDO SHOPS DATE STARTED: 08/08/90 DATA COMPLETED: 08/14/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: SCOTT METCALF

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

PROTECTIVE CASING ELEVATION: -WELL ELEVATION: -

GROUND ELEVATION: 44.9

WATER LEVEL: -DATUM: SUBASE

WEATHER: 75°, CLOUDY, RAIN SHOWERS

INSPECTOR: MICHAEL NEJDL AND NICOLE RUDERMAN

CHECKED BY: ERIK NESS

		T	T			T			т		ro			1.15
		VERY		SOIL DESCRIPTION	(FT.)			JAL AM.			ALYSI:	06Υ	(FT.)	CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	:	* RECOVERY	HNU (mqq)	color, SOIL, admixture, moisture, other notes, ORIGIN	_	NONE	STAIN	SHEEN FEAVY	<u>П</u> »	RAD.	SAMPLE ANALYSIS	LITHOLOGY	DEPTH	
0-2	4 9 19 28	50	0.0	Dark brown, fine SAND and SILT, trace roots, damp, TOP SOIL Brown, fine SAND, trace gravel, damp	0-				NA	40		mm	0.0	
2-4	29 30 70 100/3	50	0.0	Brown, fine to medium SAND, trace gravel, damp					NA	50		0. 0. 0.0 0. 0. 0.0	2.0	
4-6	3 6 7 8	35	0.0	Brown, fine to medium SAND and GRAVEL, some slit, damp	5-				0	35			4.0	
6-8	8 13 11 15	85	0.0	Brown, fine to coarse SAND and GRAVEL, some silt, damp	-				0	40		0.00		
8-10	2 4 DRILL	15	0.0	Brown, coarse SAND and GRAVEL, mottled, damp, DRILL WITH AIR ROTARY THROUGH BOULDER FROM 9.0 TO 10.0	4				0	50	,	000		
10-12	1 2 2 1	90	0.0	Brown, SILT and CLAY, some fine sand, moist	10				0	40			10.0	
12-14	5 7 9 7	90	0.0	Grey, fine SAND, some clay orange mottling, wet					0	40	•		12.0	
14-16	7 10 7 8	100	0.0		15-				0	40				
16-18	5 7 7 13	100	0.0		1				0	40				
18-20	9 11 12 14	100	0.0	Brown, fine SAND and SILT, wet					0	40	-		18.0	
		-		END OF BORING AT 20.0 feet	20-						-	1.1.1.1	20.0	

<u>ATLANTIC</u>

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: TORPEDO SHOPS DATE STARTED: 08/14/90 DATA COMPLETED: 08/14/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: SCOTT METCALF

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 48.2
PROTECTIVE CASING ELEVATION: WELL ELEVATION: -

WATER LEVEL: -DATUM: SUBASE

WEATHER: 85', LIGHT CLOUD COVER, WINDY

INSPECTOR: MICHAEL NEJDL AND NICOLE RUDERMAN

CHECKED BY: ERIK NESS

	T			T											
		ÆRY		SOIL DESCRIPTION	(FT.)	VI CC	ISI TNC	UAL AM				AL YSIS)6Y	(FT.)	WELL
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6	* RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STAIN	SHEEN	TEI	84 A	(CDM)	SAMPLE AN	LITHOLOGY) нтаза	
	5 5			Dark brown, fine SAND and SILT, trace clay, trace roots, damp, TOP	0-7				4					0.0	
0-2	8 12	55	0.0	SOIL Brown, fine SAND, trace gravel, damp	-				0	4	0				
2-4	9 7 6 4	0	NA	NO RECOVERY	-				NA	A N	Α			2.0	
4-6	. 5 8 77	70	0.0	Brown, fine to medium SAND and SILT, trace clay,wet	5-				0	5	0			4.0	
8-8	100/5 AUGER	0	NA	DRILL THROUGH BOULDERS WITH AIR ROTARY					NA	N	A			6.0	
8-10	AUGER	0	NA						ΝA	N	A				
10-12	5 7 12 10	95	0.0	Grey, fine SAND and SILT, some clay, orange banding, wet	10				0	3	5			10.0	
12-14	5 7 6 4	100	0.0	Grey, fine SAND and SILT, some clay, wet					0	50) 				
14-16	14 10 14 12	100	0.0		15—				0	40					
16-18	14 14 13 10	100	0.0	Grey, fine SAND and SILT, some clay, orange banding, wet	-				0	50)				
18-20	14 23 10 9	100	0.0	Grey, fine SAND and SILT, some clay, wet	4				0	40					
				END OF BORING AT 20.0 feet	20-							- 1		20.0	

ATLANTIC

PROJECT: IR STUDY NSB - NLON PROJECT NO: 1258-10 LOCATION: TORPEDO SHOPS

DATE STARTED: 08/10/90 DATA COMPLETED: 08/10/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 44.9 PROTECTIVE CASING ELEVATION: -WELL ELEVATION: -WATER LEVEL: -DATUM: SUBASE WEATHER: 78°, CLOUDY INSPECTOR: MICHAEL NEJDL CHECKED BY: ERIK NESS

						<u> </u>			ဟ			WELL
COLTT		* RECOVERY		SOIL DESCRIPTION	(FT.)	VISIU. CONTA	AL M.		ANAL YSIS	.0GY	(FT.)	CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6	RECO	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	1	NONE STAIN SHEEN	HEAVY	RAD.	SAMPLE AN	LITHOLOGY	DEPTH	
0-2	2 4 5 7	90	0.0	Dark brown, fine SAND and SILT, trace roots, damp, TOP SOIL Brown, SAND and SILT, trace gravel, damp	0-7			0 4) 		0.0 0.65	
2-4	9 6 5 4	20	0.0) 40				
4-6	1 1 1 1	40	0.0	Brown, SAND and SILT, some gravel, moist	5-		() 40				
8-8	4 2 2 2	65	0.0	Brown, SILT, trace gravel, wet at 6.5 feet			1	30			6.0	
8-10	3 4 4 4	100	NA	Grey-brown, fine SAND and SILT, wet			N	A 40			8.0	
10-12	4 3 3 5	80	0.0		10-		O	45				
12-14	4 6 6 5	100	0.0		-		0	42.	5			
14-16	4 7 7 6	100	0.0	Red-brown, fine SAND and SILT, wet	15-		0	30				
16-18	7 5 5 9	60	0.0	Grey-brown, fine SAND and SILT, wet			NA	30				
18-20	6 7 10 10	90	0.0	Grey-brown, SILT and CLAY, mottled, wet	4		NA	40			18.0	
				END OF BORING AT 20.0 feet	20-						20.0	

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10
LOCATION: TORPEDO SHOPS
DATE STARTED: 08/13/90
DATA COMPLETED: 08/13/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DAILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 48.4
PROTECTIVE CASING ELEVATION: WELL ELEVATION: WATER LEVEL: -

DATUM: SUBASE

WEATHER: 85°, OVERCAST, HUMID INSPECTOR: MICHAEL NEJDL CHECKED BY: ERIK NESS

		т	· ·			_			-		1.				
		VERY		SOIL DESCRIPTION	(FT.)	V _C	ISI ON	UAL			-	AL I SIC	.0GY	(FT.)	CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6	% RECOVERY	HNU (pp m)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STAIN	SHEEN	三三	₩ ₩	(cpm)	SAMILE AN	LITHOLOGY	рертн	
					0-7										
0-2	4 6 6 6	55	0.0	Brown, fine to medium SAND and GRAVEL, damp,					C	5	0	0	000	0.0	
2-4	7 15 100/5	55	0.0	Brown, fine SAND and GRAVEL, moist					C	5	ю	0	000		
4-6	5 6 8 10	40	0.0		5-				0	57	7.5	0	00		
6-8	2 2 1 1	90	0.0	Red-brown, fine SAND and SILT, trace roots, wet					0	4	0			6.0	
8-10	2 2 6 8	95	0.0	Brown, fine SAND and SILT, some clay, wet					0	50).5				
10-12	5 7 7 5	95	0.0	Brown, fine SAND and SILT, wet	10-				0	7	0				
12-14	3 4 5 4	75	0.0	Red-brown, SILT, grading to grey, SILT and CLAY, wet					0	6	0			12.0	
14-16	5 7 9 10	100	0.0	Grey-brown, fine SAND and SILT, some clay, wet	15-				0	50	0			14.0	
16-18	9 10 9 11	100	0.0	Brown, fine SAND and SILT, some clay, wet					0	30	0				
18-20	8 9 11 10	100	0.0	Grey, fine SAND, grading to brown, fine SAND and SILT, wet					0	41	0				
				END OF BORING AT 20.0 feet	20-									20.0	

ATLANTIC

BORING LOG 7 MW 2S

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: TORPEDO SHOPS DATE STARTED: 08/09/90 DATA COMPLETED: 08/09/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 48.6

PROTECTIVE CASING ELEVATION: 51.35

WELL ELEVATION: 50.41

WATER LEVEL: 44.98 (03/21/91)

DATUM: SUBASE

WEATHER: 75', PARTLY CLOUDY

INSPECTOR: MICHAEL NEJDL AND ERIK NESS

CHECKED BY: ERIK NESS

SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6°	* RECOVERY	HNU (pp m)	SOIL DESCRIPTION color, SOIL, admixture, moisture, other notes, ORIGIN	ОЕРТН (FT.)	C	10 T	SHEEN	м.	⊒ *	RAD. (cpm)	SAMPLE ANALYSIS	LITHOLOGY	DEPTH (FT.)	WELL CONSTRUCTION
0-2	3 8 5 4	85	NA NA	Dark brown, fine SAND and SILT, trace roots, moist, TOP SOIL Brown, medium SAND and GRAVEL, trace silt, moist Brown, fine SAND and SILT, trace gravel, moist	0-					0	NA NA			0.0 0.85 2.0	H
4-6	21 10 3 4 6 6	20	NA	Green-brown, fine SAND and SILT, banded with black, fine SAND and	5-					NA	NA				BENTONITE SEAL
8-10	18 15 5 8 3 12 21 22	50 75	0.0	SILT, wet Green-brown, fine SAND and SILT, wet	- 10					0	30 57.5				0.00 S
10-12	5 24 100/8	50	0.0	Green-brown, fine SAND and SILT, trace gravel, wet AUGER REFUSAL AT 11.5 feet	_					0	30			11.5	
					15										
					20			The state of the s							
			AT	LANTIC		<u> </u> Ра		e	1	of '	 				

BORING LOG 7 MW 3S

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: TORPEDO SHOPS

DATE STARTED: 08/08/90 DATA COMPLETED: 08/14/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: SCOTT METCALF

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 45.98

PROTECTIVE CASING ELEVATION: 45.98

WELL ELEVATION: 45.71

WATER LEVEL: 39.51 (03/21/91)

DATUM: SUBASE

WEATHER: 85°, CLOUDY, HUMID

INSPECTOR: MICHAEL NEJDL AND NICOLE RUDERMAN

CHECKED BY: ERIK NESS

SPLIT		X RECOVERY		SOIL DESCRIPTION	(FT.)	VI	SIC	JAL AM				NALYSIS LOGY	(FT.)	CO	WE VSTE	RUCTI	10
SPOON SAMPLE DEPTH (ft)	BLOWS PER 6*	REC	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STAIN	ZHEEN FFAVY	Ē	> e	(CDM)	SAMPLE ANALY	DEPTH				
0-2	9 15 9 6	55	0.0	Brown, fine SAND and SILT, trace roots, damp, TOP SOIL Brown, fine SAND, trace gravel, damp,	0-				0		40	mmm	0.0	_		GROUT →	
2-4	6 100/4	35	0.0						0		50					₩ *	
4-6	5 10 28 6	50	0.0	Brown, fine SAND and GRAVEL, damp,	5-				0	3	35	000	4.0			NITE	-AL
6-8	5 2 3 5	0	NA	NO RECOVERY					NA	,	IA	y. V. U.	6.0	T		BENTONITE	ŏ
8-10	2 4 8 12	10	0.0	Brown, coarse SAND and GRAVEL, trace cobbles, damp,					0	5	0	0.00	8.0				
10-12	1 2 2 1	85	0.0	Brown, fine SAND and SILT, some clay, moist	10-				0	4	0	0.0	10.0	SLOTTED PVC —			
12-14	5 7 9 7	90	0.0	Grey, fine SAND and SILT, some clay, wet	-				0	4	0			0.01 SLOTT		- SAND -	
14-16	7 10 7 8	100	0.0	Grey, fine to medium SAND, wet	15				0	4	0	0. 0. 0. 0. 0. 0. 0. 0.	14.0		. 1-1 .1		
16-18	5 7 7 13	100	0.0	Grey, fine SAND and SILT, some clay, wet	4				0	40			16.0	¥			
18-20	9 11 12 14	100	0.0	Brown, fine SAND and SILT, wet					0	40							
				END OF BORING AT 20.0 feet	20-								20.0	Į	<u></u>]	*	

ATLANTIC

GOSS COVE LANDFILL

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: GOSS COVE DATE STARTED: 10/30/90 DATA COMPLETED: 10/30/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 11.4
PROTECTIVE CASING ELEVATION: WELL ELEVATION: WATER LEVEL: -

DATUM: SUBASE

WEATHER: 80', SUNNY, CLEAR SKIES

INSPECTOR: LYNN METCALF CHECKED BY: ERIK NESS

SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6'	RECOVERY	HNU (ppm)	SOIL DESCRIPTION color, SOIL, admixture, moisture, other notes, ORIGIN	ОЕРТН (FT.)	CC	STAIN	M.	<u></u>	RAD. (com)	SAMPLE ANALYSIS	LITHOLOGY	DEPTH (FT.)	WELL CONSTRUCTION
0-2	0 31 51 72	75 25	4.8	Brown, fine SAND, some gravel, trace wood chips, trace glass, trace brick fragments, moist, FILL Light brown, fine to medium SAND and GRAVEL, trace cinders, iron staining, moist, FILL	0-7				1	40		20000	0.0	
4-6	32 18 18 17	75	14.0	Black, fine SAND, grading to, orange-brown, fine to coarse SAND, trace roots, metal filings, cinders, iron staining, moist, FILL	5-				1	70		00000		
6-8	19 21 23 17	50	7.0	Grey, medium SAND and GRAVEL, moist Brown, fine to coarse SAND, trace slit, trace clay, iron staining, moist					f	50		000	6.0 7.5	
8-10	9 11 11 12	10	0.0	Brown, fine to coarse SAND, some silt, some gravel, moist	10-				1	40			10.0	
10-12	12 31 13 14	0	NA	NO RECOVERY, wet on outside of spoon at 10.0 feet				!	A	NA			,0.0	
12-14	8 14 13 14	0	NA					1	۸A	NA				i
1416	8 3 2 4	25	15.0	Black, fine to coarse SAND, oil sheen, wet	15-				1	40			14.0	
16-18	5 3 4 3	25	18.0						1	40				
18-20	5 6 6 9	75	25.0	Black, fine to coarse SAND, some gravel, oil sheen, wet Dark brown, SILT and CLAY, trace shell fragments, trace wood fragments, black stain, oil sheen, wet	20-				1	40			19.3 20.0	
	L		AT	End of boring at 20.0 feet	P	ac	ie 1	0	f 1			<u> </u>		

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: GOSS COVE DATE STARTED: 10/30/90 DATA COMPLETED: 10/30/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 11.3 PROTECTIVE CASING ELEVATION: -WELL ELEVATION: -WATER LEVEL: -DATUM: SUBASE

WEATHER: 80', SUNNY, CLEAR SKIES

INSPECTOR: LYNN METCALF CHECKED BY: ERIK NESS

		, 	·			,-									
001.77		* RECOVERY		SOIL DESCRIPTION	(FT.)	V.C	IS ON	IU/ ITA	AL M.		T	NALYSIS	-06Y	(FT.)	CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6	RECO	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NON	STAIN	SHEEN	HEAVY	ਜੁ×	RAD.	SAMPLE AL	LITHOLOGY	DEPTH	
0-2	0 21 31 18	50	0.2	Brown, fine to coarse SAND and GRAVEL, trace cinders, moist, FILL	0-					1	60		000	0.0	
2-4	17 13 11 10	50	9.5	Brown, fine SAND, some silt, trace gravel, moist, FILL						1	40		0000		
4-8	6 6 9 15	25	8.5		5					1	40		000		
6-8	13 11 12 13	25	20.0	Brown, fine to medium SAND, some silt, wood chips, pockets of black staining, moist, FILL						1	40		DOPU		
810	6 6 9 6	10	5.0	Brown-black, medium SAND and GRAVEL, metal pleces, wet, FILL						1	40		OPO		
10-12	6 4 5 8	25	.75	Brown, fine to coarse, SAND and GRAVEL, trace metal wire, wet, FILL	10-					1	40		2000 0000		
12-14	100/0			AUGER REFUSAL AT 12.0 feet										12.0	
					15-										
					30_										
,					20-										

ATLANTIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: GOSS COVE DATE STARTED: 11/06/90 DATA COMPLETED: 11/08/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 18.3

PROTECTIVE CASING ELEVATION: -

WELL ELEVATION: -

WATER LEVEL: -DATUM: SUBASE

WEATHER: 50', CLEAR SKIES, WINDY

INSPECTOR: ERIK NESS AND CURTIS NICHOLS

CHECKED BY: ERIK NESS

SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 8*	RECOVERY	UNH (maa)	SOIL DESCRIPTION color, SOIL, admixture, moisture, other notes, ORIGIN	ОЕРТН (FT.)	C	NC T	SHEEN	М.	텔 *	RAD.	SAMPLE ANALYSIS	LITHOLOGY	ОЕРТН (FT.)	WELL CONSTRUCTION
0-2	13 17 35 44	100	1.5	Dark brown, fine SAND and organic SILT, damp, TOPSOIL Brown, fine to coarse SAND and GRAVEL, moist, FILL Brown, fine to coarse SAND and	0-					1	40		D. O. O.	0.0 0.2 2.0	
2-4 4-6	25 15 13 13 5 11 47 30	50 25	1.0	GRAVEL, trace slit, trace cobbles, damp	5-					1	50 50				
6-8 8-10	18 12 17 29	50	0.3							1	40				
10-12	17 29 30 41 79 96	20 25	7.0		10					1	40			40.5	
12-14	29 100/0			AUGER REFUSAL AT 12.5 feet	15-					•	70			12.5	
					20-										
			AI	LANTIC	 F) a	_ Ge	<u> </u>		of 1				-	

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: GOSS COVE DATE STARTED: 10/30/90 DATA COMPLETED: 10/30/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 10.48

PROTECTIVE CASING ELEVATION: 10.48

WELL ELEVATION: 10.15

WATER LEVEL: 1.47 (03/21/91)

DATUM: SUBASE

WEATHER: 40°, CLEAR SKIES

INSPECTOR: ERIK NESS AND LYNN METCALF

CHECKED BY: ERIK NESS

SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6*	* RECOVERY	HNU (ppm)	SOIL DESCRIPTION color, SOIL, admixture, moisture, other notes, ORIGIN	ОЕРТН (FT.)	CC	STAIN WATKI SHEEN HAVK	-	RAD. (cpm)	SAMPLE ANALYSIS	ОЕРТН (FT.)	WELL CONSTRUCTION
										03	<u> </u>	I
0-2	0 28 16 22	60	0.0	0.0 - 0.3 ASPHALT Brown, fine to medium SAND, some gravel, trace glass, moist, FILL	0-7			1	40	V D	0.0	PVC ————————————————————————————————————
2-4	21 16 18 52	50	0.8	Brown, fine to medium SAND, some gravel, trace glass, trace metal fragments, moist, FILL				1	50	000		2 In. BLANK PVC ———————————————————————————————————
4-6	32 26 29 23	75	2.8	Brown-black, fine SAND, some gravel, trace brick fragments, trace cinders, moist, FILL	5-			1	40	0000		S B B B B B B B B B
6-8	28 24 33 34	75	1.6	Brown-black, medium to coarse SAND and GRAVEL, some silt, moist, FILL				1	40			*
8-10	5 6 5 21	10	7.0	Brown, fine SAND, some slit, trace brick fragments, trace cinders, trace ceramic fragments, wet at 10.0 feet, FILL	1			1	30	000		
10-12	6 5 4 5	25	17.8	Brown-black, fine SAND and GRAVEL, trace metal filings, trace brick fragments, slight oil sheen, wet, FILL	10-			1	40	7000		0.01 SLOTTED PVC
12-14	7 2 3 5	25	22.0		-			1	40	0000		0.01 SLC
14-16	8 4 51 3	25	38.0	Black, medium to coarse SAND, trace brick fragments, trace metal filings, trace wire, oil sheen, wet, FILL	15-			1	40	70,00		
16-18	4 4 5 4	10	4.0					1	50			¥ [[]
8-20	5 4 9 11	100	4.0	Black, medium to coarse SAND, trace brick fragments, trace metal filings, trace wire, trace paper, spark plug, oil sheen, wet, FILL Brown-black, SILT and CLAY, trace shell fragments, wet END OF BORING AT 20.0 feet	20-			1	40		18.8	· · · · · · · · · · · · · · · · · · ·

AILANIIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: GOSS COVE DATE STARTED: 11/08/90 DATA COMPLETED: 11/08/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 9.91

PROTECTIVE CASING ELEVATION: 9.91

WELL ELEVATION: 9.43 WATER LEVEL: 2.45 (03/21/91)

DATUM: SUBASE

WEATHER: 50°, PARTLY CLOUDY, WINDY INSPECTOR: ERIK NESS AND CURTIS NICHOLS

CHECKED BY: ERIK NESS

						\ <u>'</u>		7.1.4.1	T		SIS			WELL	TTON
SPLIT		RECOVERY		SOIL DESCRIPTION	(FT.)	Č	NC 727	TAN	Ī.	_	ANAI YSTS	L06Y	(FT.)	CONSTRUC	11014
SPOON SAMPLE DEPTH (ft)	BLOWS PER 6°	RECC	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STAIN	STEEN		RAD.	SAMPIF A	LITHOLOGY	DEPTH		
0-2	0 33 51 85	75	4.5	0.0 - 0.3 ASPHALT 0.3 - 1.5 Light brown, fine to coarse SAND and GRAVEL,	0-				2	4	0	V 00	0.0		
2-4	23 39 40 43	50	8.0	trace cobbles,damp, FILL 2.0 - 6.0 Grey, fine to coarse SAND, broken glass, ash, metal fragments, damp, grading to rust color					2	4	0	00000		2 In. BLANK PVC ———————————————————————————————————	SEAL
4-6	81 100/3	1	NA		5-				N	N	A	000		12	
6-8	17 21 18 15	50	4.0	Grey, fine to coarse SAND, some silt, trace gravel, moist					1	4	0		6.0	1	
8-10	17 33 50 50	75	9.0	Grey, fine to medium SAND, some gravel, some silt, moist					1	3	0	0.00	8.5		
10-12	21 17 14 23	50	35	Grey, fine to coarse SAND and GRAVEL, some silt, black stain from 13.5 -14.0, wet	10-				1	4	٥	0.00		—— 0.01 SLOTTED PVC ———————————————————————————————————	
12-14	11 4 2 4	25	15						1	4	0			0.0	
14-16	6 4 6 4	0	NA	NO RECOVERY	15-				N/	N.	A	γ. υ . υ.	14.0	¥ : = :	
16-18	4 5 4 4	0	NA						NA	N	4				
18-20	5 6 6 7	75	5.0	Grey, fine SAND and SILT, trace clay, trace shell fragments, wet					1	50			18.0		
				End of boring at 20.0 feet	20-							1.1.1.4	20.0	<u>*</u>	

ATLANTIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: GOSS COVE DATE STARTED: 11/06/90 DATA COMPLETED: 11/08/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 9.91

PROTECTIVE CASING ELEVATION: 9.91

WELL ELEVATION: 9.43 WATER LEVEL: 2.73 (03/21/91)

DATUM: SUBASE

WEATHER: 50°, PARTLY CLOUDY, WINDY INSPECTOR: ERIK NESS AND CURTIS NICHOLS

CHECKED BY: ERIK NESS

SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6°	* RECOVERY	HNU (ppm)	SOIL DESCRIPTION color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH (FT.)	C	NC 	SHEEN	1.] 96	RAD.	SAMPLE ANALYSIS	LITHOLOGY	DEPTH (FT.)	WELL CONSTRUCTIO
0-2	0 31 67 100	100	3.0	0.0 - 0.3 ASPHALT Brown, fine to coarse SAND and GRAVEL, trace cobbles, damp, FILL	0-					1	40		0000	0.0	ROUT
2-4	50 45 35 15 7 8	75	10.0	Dark brown, fine to coarse SAND and GRAVEL, some silt, trace glass, trace metal filings, damp, FILL						1	40	·	0000		2 in. BLANK PVC — KXXXXXXX KXXXXXXXX BENTONITE SFAI
4-6 6-8	35 50 29 45	25 75	10.0 5.0	Light brown, fine to coarse SAND and GRAVEL, trace silt, trace cobbles, moist, FILL	5-						50		0000		*
8-10	99 85 50 48 23 19	75	200	Black, fine to medium SAND, some gravel, some silt, trace metal fragments, moist, FILL Grey, fine to coarse SAND and GRAVEL, some silt, moist, FILL						1	40		20000		0.01 SLOTTED PVC
10-12	11 5 4 5	0	NA	Grey, fine to coarse SAND and GRAVEL, some cobbles, moist, FILL Grey, fine to coarse SAND and GRAVEL, some cobbles, trace broken glass, trace wood fragments, moist, FILL	10-				N	A	NA			9.5	0.01 SLOTTED PVC
12-14	5 4 8 4	0	NA	NO RECOVERY	-				N.	A	NA				0.01 SI
14-16	4 3 4 5	0	NA		15-				N.	A	NA				¥ . 4
18-18	4 2	0	NA	Plack modium to account CAND	1				N	١	NA		7.7.1	18.0	
8-20	21	50	40.0	Black, medium to coarse SAND, trace silt, wet Grey, fine SAND and SILT, trace clay, trace shell fragments, wet END OF BORING AT 20.0 feet	20-				1		40	7.7.4.		19.5	•

ATLANTIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: GOSS COVE DATE STARTED: 11/06/90 DATA COMPLETED: 11/06/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 9.82

PROTECTIVE CASING ELEVATION: 9.62

WELL ELEVATION: 9.34

WATER LEVEL: 3.05 (03/21/91)

DATUM: SUBASE

WEATHER: 50°, CLEAR SKIES, WINDY

INSPECTOR: ERIK NESS AND CURTIS NICHOLS

CHECKED BY: ERIK NESS

SPLIT SPOON SAMPLE DEPTH	Dialia	* RECOVERY		SOIL DESCRIPTION color, SOIL, admixture, moisture,	ОЕРТН (FT.)	CON	JAUI MATI	· iii	AD.	SAMPLE ANALYSIS	LITHOLOGY	DEPTH (FT.)	WEL CONSTRU	
(ft)	BLOWS PER 6"		HNU (ppm)	other notes, ORIGIN		20	בומי			SAM				
0-2	0 18 30 35	50	3.0	0.0 - 0.3 ASPHALT Brown, fine to coarse SAND and GRAVEL, some silt, damp, FILL	0-7			1	40		V 00	0.0 0.3	A	ROUT ¥ ⊢
2-4	37 55 73 84	75	o	Light brown, fine to coarse SAND and GRAVEL, trace silt, damp, FILL Grey, fine SAND and SILT, rust-brown mottling, trace sand blast sand, damp, FILL				1	40		0000		2 In. BLANK PVC —	→★★★ GROUT ≯ BENTONITE SEAL
4-6	71 80 43 30	75	11.0	Light brown, fine to coarse SAND and GRAVEL, trace cobbles, trace silt, damp, FILL	5			1	40		000			
6-8	12 15 14 13	25	7.0	Light brown, fine to coarse SAND and GRAVEL, trace cobbles, trace slit, trace sand blast sand, damp, FILL Red and pink, brick fragments and building material, damp, FILL				1	40		10000			
8-10	13 1 2 5	50	1.0	Dark brown, fine to coarse SAND, some gravel, some silt, moist, FILL Dark brown, fine to coarse SAND and GRAVEL, trace metal, trace light bulb pieces, oil sheen, wet, FILL	10-			1	40		0000		ED PVC	
10-12	5 17 100/3	0	NA	NO RECOVERY	10-			NA	NA			10.0	0.01 SLOTTED PVC	SAND
12-14	2 2 2 3	0	NA					NA	NA					SA
14-16	2 3 9 7	25	2.0	Black, fine SAND, some silt, trace gravel, wet	15-			1	40	•		14.0	¥	
16-18	11 23	25	3.0					1	40					
18-20	3 6 2 3	100	5.0	Grey, fine SAND and SILT, trace clay, trace shell fragments, wet END OF BORING AT 20.0 feet	20-			1	40			19.0		\
			AT	LANTIC	<u> </u> - -	age	e 1 (of 1						· · · · · · · · · · · · · · · · · · ·

SPENT ACID STORAGE AND DISPOSAL AREA

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10

LOCATION: SPENT ACID STORAGE

DATE STARTED: 10/18/90 DATA COMPLETED: 10/18/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JOE RABB

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 28.5 PROTECTIVE CASING ELEVATION: -WELL ELEVATION: -WATER LEVEL: -DATUM: SUBASE WEATHER: 70', PARTLY CLOUDY

INSPECTOR: ERIK NESS CHECKED BY: ERIK NESS

SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6º	RECOVERY	HNU (ppm)	SOIL DESCRIPTION color, SOIL, admixture, moisture, other notes, ORIGIN	ОЕРТН (FT.)	CC	STAIN WATER	1.	, KAD.	SAMPI F ANAI YSTS	LITHOLOGY	DEPTH (FT.)	WELL CONSTRUCTION
0-2	14 5 4 8	50	0.4	0.0 - 0.1 ASPHALT Brown, fine to coarse SAND, some gravel, orange staining, damp	0-			1	50			0.0 0.1	
2-4	6 4 3 3	50	0.4					1	50				
4-6	4 8 5 4	50	0.4	Brown, fine to medium SAND, trace silt, trace clay, orange staining, damp	5-			1	30		• • • • • • • • • • • • • • • • • • •	4.0	
6-8	3 4 4 3	50	11.0		1			1	30		o o o		
8-10	7 9 8 8	50	1.8	Grey, fine to coarse SAND, some silt, wet at top				1	80			8.0	
10-12	3 8 5 5	50	0.4		10				40				
12-14	4 5 7 8	100	0.4		4			1	40				
14-18	4 4 4 5	75	1.0	Grey, fine SAND, trace silt, wet	15-			1	40			15.0	
16-18	5 5 4 5	75	0.4		*			1	40				
18-20	8 7 8 7	100	0.4	Grading to some silt, rust colored	1			1	40				
			AT	mottling, wet END OF BORING AT 20.0 feet	20-		e 1				• • • • • • •	20.0	

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10

LOCATION: SPENT ACID STORAGE DATE STARTED: 10/23/90 DATA COMPLETED: 10/23/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JOE RABB

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 28.3
PROTECTIVE CASING ELEVATION: -

WELL ELEVATION: -

WATER LEVEL: -DATUM: SUBASE

WEATHER: 60', RAIN

INSPECTOR: LYNN METCALF CHECKED BY: ERIK NESS

		ЯY		SOIL DESCRIPTION	(FT.)	V:	ISI	UAL FAM	i.			ANALYSIS)6∀	(FT.)	WELL CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6"	RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	ОЕРТН (NONE	STAIN	SHEEN	1247	ļ×	RAD. (cpm)	SAMPLE ANA	LITHOLOGY	ОЕРТН (
										:					
0-2	11 7 5 4	20	1.0	Brown-black, medium SAND and GRAVEL, wet,	0-7					0 :	40		000	0.0	
2-4	7 7 3 7	50	3.0	Yellow-brown, fine SAND, wet						0	40			2.0	
4-6	7 3 5 8	NR	0.0	NO RECOVERY	5					0	40			4.0	
6-8	4 5 10 13	100	0.0	6.0 - 6.2 Brown, medium SAND, trace fine sand 6.2 - 6.4 Black, wood ash 6.4 - 7.5 Yellow-brown, very fine SAND, trace slit,	-					0	40		0.000	6.0	
8-10	10 7 10 8	100	0.0	7.5 - 8.0 Grey, very fine SAND, trace silt, wet Tan, fine to medium SAND, wet						0	30		o o o o o o o		
10-12	9 5 5 8	75	0.0	Grey, fine SAND and SILT, some clay, wet Light brown, very fine SAND and SILT, trace gravel, wet	10-					0	40			10.0	
12-14	4 4 7 8	100	0.0	Light brown, fine SAND and SILT, occasional clay lens, wet	-					0	40				
14-16	7 5 5 5	100	0.0	Tan, fine to medium SAND, trace silt, wet	15-					0	40		0.00	14.0	
16-18	5 7 7 8	100	0.0	Grading to some silt, trace, clay, wet	-					0	40				
18-20	7 8 7 6	100	0.0	Tan, fine to medium SAND, trace coarse sand, trace ciay, wet Light brown, very fine SAND, some silt, wet	20-					0	40		0 0	19.0	
				END OF BORING AT 20.0 feet	20-									20.0	

ATLANTIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10

LOCATION: SPENT ACID STORAGE

DATE STARTED: 10/24/90 DATA COMPLETED: 10/24/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: FRANK WARE

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 28.0
PROTECTIVE CASING ELEVATION: WELL ELEVATION: WATER LEVEL: DATUM: SUBASE
WEATHER: 60°, CLOUDY SKIES
INSPECTOR: LYNN METCALF
CHECKED BY: ERIK NESS

WELL CONSTRUCTION * RECOVERY (FT.) (FT.) SOIL DESCRIPTION LITHOLOGY CONTAM. SPLIT DEPTH DEPTH SPOON SAMPLE DEPTH SHEEN HEAVY LEL RAD. color, SOIL, admixture, moisture, BLOWS HNU other notes, ORIGIN (ft) PER 6 (ppm) 0 0.0 تحور ب Brown, fine to medium SAND and GRAVEL, moist 10.01 0:00 10 10 50 0.0 50 0 20 10 1001 Brown to orange mottled, fine SAND, trace silt, trace wood fragments at 2.0 108 2-4 75 0.0 60 top, moist 0 8 5 11 4-8 50 0.0 5-0 80 3 4 10.3 8-8 50 0.0 0 40 6 10 8.0 Grey, fine to medium SAND, some silt, wet 77 o∷ o∷ 8-10 100 0.0 0 40 76 o Ö o∷ o. · o · o 10-Grey, fine to medium SAND, trace o∷ o: silt, wet .o∵o 3 7 10-12 100 0.0 0 40 Light brown, very fine SAND and SILT, trace clay, iron staining, wet 11.0 7 10 Grading to fine to very fine SAND and SILT, wet 11 12-14 50 0.0 40 0 3 2 Grading to very fine SAND and SILT, trace clay, iron staining, wet 58 14-16 75 4.0 15-0 40 78 Light brown, fine SAND and SILT, wet 3 4 16-18 50 3.0 40 0 3 4 18.0 Tan-grey, fine to very fine SAND, trace silt, wet 74 18-20 100 0.0 50 0 56 Light brown, very fine SAND, some 20 20.0 END OF BORING AT 20.0 feet

ATLANTIC

FORMER GASOLINE STATION

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10

LOCATION: FORMER GASOLINE STATION

DATE STARTED: 11/01/80
DATA COMPLETED: 11/01/80

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 34.5
PROTECTIVE CASING ELEVATION: -

WELL ELEVATION: -

WATER LEVEL: - DATUM: SUBASE

WEATHER: 40', PARTLY CLOUDY, WINDY INSPECTOR: LYNN METCALF AND ERIK NESS

CHECKED BY: ERIK NESS

<u></u>		T	Τ			_			T -			n	 	WELL
		VERY		SOIL DESCRIPTION	(FT.)	V.C	ISI	UAL		_		06Y	(FT.)	CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6*	* RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STAIN	SHEEN		אַע	(com)	LITHOLOGY	DEPTH	
0-2	19 14 16 18	25	1.0	Brown, fine to medium SAND and GRAVEL, moist	0-				1	6	30	000		
2-4	9 7 5 4	0	NA	NO RECOVERY					NA	,	ΙA		2.0	
4-8	3 4 3 3	10	0.0	Brown, fine SAND, trace silt, trace ash, moist	5-				1	5	50		4.0	
6-8	2 1 2 2	50	0.0	Brown, fine to medium SAND, trace gravel, trace silt, moist					1	4	10	0.0.0		
8-10	17 19 21 42	75	7.5		1				1	5	0	o o o		:
10-12	37 30 41 43	75	7.5	Brown, fine to coarse SAND and GRAVEL, moist	10-				1	6	10	000		
12-14	31 23 11 12	75	1.0	Light brown, fine SAND, trace	4				1	4	0	0 00	1	
14-18	14 11 11 15	80	0.8	gravel, moist	15-				1	4	0			
16-18	17 10 12 13	80	25.0						1	5	0			
18-20	17 10 9 11	60	0.5		20-				1	4	0			
				END OF BORING at 20.0 feet	207								'20.0	

ATLANTIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10

LOCATION: FORMER GASOLINE STATION

DATE STARTED: 11/01/90 DATA COMPLETED: 11/01/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 34.8

PROTECTIVE CASING ELEVATION: -

WELL ELEVATION: -WATER LEVEL: -DATUM: SUBASE

WEATHER: 40°, PARTLY CLOUDY, WINDY

INSPECTOR: LYNN METCALF AND ERIK NESS

CHECKED BY: ERIK NESS

	 									SIS	- 1		WELL
CDITT		* RECOVERY		SOIL DESCRIPTION	(FT.)	CONT	AM.			NALY	L06Y	(FT.)	CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6	RECC	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	ОЕРТН	NONE	HEAVY	피*	RAD. (CDM)	SAMPLE ANALYSIS	LITHOLOGY	DEPTH	
0-2	AUGER 17 12	25	0.0	0.0 - 0.1 ASPHALT 0.1 - 0.85 CONCRETE Brown, medium SAND trace gravel, moist	0-7			1	40			0.0 0.85	
2-4	6 6	0	NA	NO RECOVERY				NA	NA			2.0	
4-6	4 5 4 4	25	0.0	Brown, medium SAND, some gravel, trace silt, moist	5-			1	40			4.0	
8-8	3 2 2 2	25	2.0					1	40				
8-10	3 2 2 2	10	0.0		10-			1	40				
10-12	4 6 7 6	5	0.0					1	40				
12-14	9 9 8 7	50	7.5	Light brown, medium to coarse SAND and GRAVEL, moist				1	30			13.4	
14-16	6 9 10 8	50	0.5	Light brown, fine to coarse SAND, trace gravel, moist	15			1	50			14.0	
16-18	8 8 8 8	75	4.0					1	40				
18-20	12 8 10 11	50	0.5		20-			1	40			00.0	
		-		END OF BORING AT 20.0 feet	207							20.0	

ATLANTIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10

LOCATION: FORMER GASOLINE STATION

DATE STARTED: 11/01/90 DATA COMPLETED: 11/01/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 35.3 PROTECTIVE CASING ELEVATION: -WELL ELEVATION: -WATER LEVEL: -

DATUM: SUBASE

WEATHER: 40°, PARTLY CLOUDY, WINDY INSPECTOR: LYNN METCALF AND ERIK NESS

CHECKED BY: ERIK NESS

		ERY		SOIL DESCRIPTION	(FT.)	VI CC	SIU	IAL AM.			ANAL 1515	√90	(FT.)	WELL CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6°	* RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	ОЕРТН	NONE	STAIN	HEAVY	ਜੁ∗	RAD.	SAMPLE AN	LITHOLOGY	DEPTH	
0-2	AUGER 5 4	100	1.5	0.0 - 0.1 ASPHALT 0.1 - 0.85 CONCRETE Brown, fine to medium SAND, some gravel, trace silt, moist	07				1	50			0.0 0.85	
2-4	3 2 1 3	75	11.0		-				1	50	- 1			
4-6	8 17 18 14	100	7.5		5-				1	40				
6-8	10 12 9 12	75	9.0						1	40				
8-10	17 18 21 21	75	10.0						1	40				
10-12	24 37 31 24	60	4.0	Light brown, medium to coarse SAND and GRAVEL, moist	10-				1	40		0 0	10.0	
12-14	29 19 18 17	50	9.0						1	40	1		1	
14-16	15 11 11 10	60	15.0	Light brown, fine to medium SAND,	15				1	40	1		15.5	:
16-18	4 10 11 13	50	12.0	zones of brown staining, moist					1	50	1	0 0 0 0 0 0		
18-20	10 12 16 12	80	11.0	Light brown, fine SAND, grading to tan-gray color, moist					1	40				
				END OF BORING AT 20.0 feet	20-							· · · · · · · · · · · · · · · · · · ·	20.0)

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10

LOCATION: FORMER GASOLINE STATION

DATE STARTED: 11/01/90 DATA COMPLETED: 11/01/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 35.4 PROTECTIVE CASING ELEVATION: -

WELL ELEVATION: -WATER LEVEL: -DATUM: SUBASE

WEATHER: 40', PARTLY CLOUDY, WINDY INSPECTOR: LYNN METCALF, ERIK NESS

CHECKED BY: ERIK NESS

		* RECOVERY		SOIL DESCRIPTION	(FT.)	V.	ISIU.	AL M.		-	ANALYSIS	.06Y	(FT.)	WELL
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6°	RECO	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STAIN	HEAVY	ਜੁ∗	RAD.	SAMPLE AN	LITHOLOGY	ОЕРТН	,
0-2	AUGER	30	NA	0.0 - 0.1 ASPHALT 0.1 - 0.85 CONCRETE AUGER TO 2.0 feet	0-				NA	NA			0.0 0.85	
2-4	4 4 5 8	75	0.0	Dark brown, fine to medium SAND, some gravel, trace silt, moist					0	80			2.0	
4-6	12 11 10 13	75	1.0		5-				0	50	į			
6-8	6 6 7 11	75	1.5						0	30				
8-10	20 17 26 21	100	1.3						0	40				
10-12	27 30 30 34	60	0.5	Light brown, medium to coarse SAND and GRAVEL, moist	10-				0	50		00	10.8	
12-14	30 29 22 3 2	100	1.0		-				0	40	b K	000		
14-16	25 17 12 11	60	1.0	Light brown, fine to medium SAND,	15-				0	80	•	00.	15.3	
16-18	13 9 5 10	75	1.0	Light brown, fine SAND, grading to	-				0	40	0	0 0	17.4	
18-20	9 7 9 11	50	NA	coarse sand at 19.0 feet, moist					0	NA				
				END OF BORING AT 20.0 feet	20-								20.0	

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10

LOCATION: FORMER GASOLINE STATION

DATE STARTED: 11/01/90 DATA COMPLETED: 11/01/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 35.4

PROTECTIVE CASING ELEVATION: -

WELL ELEVATION: -WATER LEVEL: -

DATUM: SUBASE

WEATHER: 40°, PARTLY CLOUDY, WINDY INSPECTOR: LYNN METCALF, ERIK NESS

CHECKED BY: ERIK NESS

		ΈRΥ		SOIL DESCRIPTION	(FT.)	V.C	IS:	UA TAI	L.			ALYSIS	06Y	(FT.)	WELL CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6"	* RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STAIN	SHEEN	HEAVY	ਜੁ×	RAD. (cpm)	SAMPLE AN	LITHOLOGY	рертн	
0-2	AUGER 16 18	30	NA	0.0 - 0.1 ASPHALT 0.1 - 0.85 CONCRETE AUGER TO 2.0 feet	0-					NA :	NA			0.0 0.85	
2-4	18 17 18 16	50	0.0	Brown, fine to medium SAND, some gravel, trace silt, moist						0	50		0 0 0	2.0	
4-6	11 7 6 9	80	0.0		5-					0	40		o. o. o. o. o. o. o. o. o. o. o. o. o. o		
6-8	12 10 11 18	40	0.0							0	40		6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6		
8-10	15 17 27 38	75	3.5		10-					0	40		o. o. o. o. o. o. o. o. o.		
10-12	35 40 52 41	80	8.5	Light brown fine to coarse SAND						0	80			11.65	
12-14	17 15 15 1 8	90	6.0	Light brown, fine to coarse SAND and GRAVEL, moist						0	60)	0.00		
14-16	18 19 15 14	0	NA	NO RECOVERY	15-				1	NA	NA			14.0	
16-18	11 9 10 10	50	NA	Light brown, fine to coarse SAND and GRAVEL, moist						0	50		000		
18-20	10 9	75	4.5	Light brown, fine to medium SAND, trace gravel, moist						0	40		0 0 0 0 0 0 0 0 0		
				END OF BORING AT 20.0 feet	20-								· · · · · · · · · · · · · · · · · · ·	20.0	

ATLANTIC

AREA A

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: AREA A WETLAND DATE STARTED: 9/05/90 DATA COMPLETED: 9/05/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 67.5
PROTECTIVE CASING ELEVATION: WELL ELEVATION: WATER LEVEL: -

DATUM: SUBASE

WEATHER: 75°, PARTLY CLOUDY INSPECTOR: ERIK NESS CHECKED BY: ERIK NESS

SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6°	# RECOVERY	HNU (ppm)	SOIL DESCRIPTION color, SOIL, admixture, moisture, other notes, ORIGIN	ОЕРТН (FT.)	NONE	STAIN	SHEEN SHEEN	自	RAD.	SAMPI F ANA! YSTS	LITHOLOGY	DEPTH (FT.)	WELL
				WATER AND ROOTS	0-7								0.0	
0-2	WOH 1	0	NA						NA	N	A			
2-4	МОН	0	NA	NO RECOVERY					NA	N	A		2.0	
4-6	WOH	0	NA		5-				NA	N	A			
6-8	woн	o	NA						NA	N	A			
8-10	woн	30	1.0	Dark grey, SILT and CLAY, trace fine sand, trace shell fragments, wet, DREDGE SPOIL	4 4				o	30	0		8.0	
10-12	МОН	100	1,0		10-				0	30	٥			
				AUGER TO 15.0 feet									12.0	
15-17	WOH 1 11	100	12.0	Dark grey, SILT and CLAY, trace fine sand, trace shell fragments, wet, DREDGE SPOIL AUGER TO 20.0 feet	15-				0	30			15.0	
20-22		100	17.0	Dark grey, SILT and CLAY, trace fine sand, trace shell fragments, wet, DREDGE SPOIL	20-				0	30			20.0	

ATLANTIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: AREA A WETLAND DATE STARTED: 9/05/90 DATA COMPLETED: 9/05/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

SAMPLING METHOD: SPLIT SPOON

DRILLING METHOD: HOLLOW STEM AUGER

GROUND ELEVATION: 67.5 PROTECTIVE CASING ELEVATION: -WELL ELEVATION: -WATER LEVEL: -DATUM: SUBASE WEATHER: 75', PARTLY CLOUDY

INSPECTOR: ERIK NESS CHECKED BY: ERIK NESS

SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6*	# RECOVERY	HNU HNU	SOIL DESCRIPTION color, SOIL, admixture, moisture, other notes, ORIGIN	ОЕРТН (FT.)	C	STAIN WATNO SHEEN HEAVY	┼	RAD.	SAMPLE ANALYSIS	LITHOLOGY	DEPTH (FT.)	WELL CONSTRUCTION
20-22				AUGER TO 25.0 feet	21-							22.0	
25-27		100	8.0	Grading to little clay, little sand AUGER TO 30.0 feet	26-			0	30			25.0 27.0	
30-32		100	1.0	Dark grey, SILT, little clay, little sand, trace shell fragments, wet, DREDGE SPOIL Dark brown, organic SILT and CLAY, trace fine sand, trace roots, TOP SOIL END BORING AT 32.0 feet	31-			0	30			30.0 31.7 32.0	
					36-								
			AT	LANTIC	41-	Par	ae 2	of	2			-	

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: AREA A WETLAND DATE STARTED: 9/08/90 DATA COMPLETED: 9/08/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 68.2
PROTECTIVE CASING ELEVATION: WELL ELEVATION: WATER LEVEL: DATUM: SUBASE
WEATHER: 70', FOGGY
INSPECTOR: FRIK NESS

INSPECTOR: ERIK NESS CHECKED BY: ERIK NESS

						1			T		т.	(C)			
		* RECOVERY		SOIL DESCRIPTION	(FT.)	V.	IS ON	IUA! TAN	1.	- 1		NALYSIE	LOGY	(FT.)	WELL CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6"	RECO	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STAIN	SHEEN	HEAVY	j.*	RAD. (cpm)	SAMPLE A	LITHOLOGY	ОЕРТН	
					- 0-								11 111 111 1	0.0	
0-2	WOH 1	100	0.4	Red brown, organic silt, some roots, moist Dark grey, SILT and CLAY, trace fine sand, trace shell fragments,						1	40			1.0	
2-4	МОН	100	0 .6	wet, DREDGE SPOIL						1	30	*			
4-8	МОН	100	1.0		5-					1	50				
				AUGER TO 10.0 feet									_ X_ X	8.0	
10-12	WOH 11	100	3.0	Dark grey, SILT and CLAY, trace fine sand, trace shell fragments, wet, DREDGE SPOIL	10-					1	50			10.0	
				AUGER TO 15.0 feet									XX	12.0	
				Dark grey, SILT and CLAY, trace	15-								\times	15.0	
15-17	wон 11	100	3.00	fine sand, trace shell fragments, wet, DREDGE SPOIL AUGER TO 20.0 feet	-					1	50			17.0	
20-22	WOH WOH	100	19.0	Dark grey, SILT and CLAY, trace fine sand, trace shell fragments, wet, DREDGE SPOIL	20-					1	50			20.0	

ATLANTIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: AREA A WETLAND DATE STARTED: 9/06/90

DATA COMPLETED: 9/06/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 68.2

PROTECTIVE CASING ELEVATION: -

WELL ELEVATION: -WATER LEVEL: -

DATUM: SUBASE

WEATHER: 70', FOGGY INSPECTOR: ERIK NESS

CHECKED BY: ERIK NESS

WELL CONSTRUCTION (FT.) (FT.) % RECOVERY SOIL DESCRIPTION LITHOLOGY CONTAM. SPLIT SPOON DEPTH DEPTH STAIN SHEEN HEAVY LEL LEL KAD. SAMPLE color, SOIL, admixture, moisture, DEPTH BLOWS UNH other notes, ORIGIN (ft) PER 6 (ppm) 21мон мон 20-22 11 AUGER TO 25.0 feet 25.0 Dark grey, SILT and CLAY, trace fine sand, trace shell fragments, HOM HOM 40 100 26-25-27 7.0 wet, DREDGE SPOIL 1 2 1 27.0 AUGER TO 30.0 feet 30.0 Dark grey, SILT, little clay, little sand, trace shell fragments, wet, MOH 40 100 30-32 1.0 31-1 DREDGE SPOIL 33 31.6 Dark brown, organic SILT and CLAY, trace fine sand, trace roots, TOP SOIL 31.9 32.0 Grey, fine SAND and SILT, trace clay, wet, END BORING AT 32.0 feet 36-

Page 2 of 2

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: AREA A WETLAND DATE STARTED: 8/31/90 DATA COMPLETED: 8/31/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 71.9 PROTECTIVE CASING ELEVATION: -WELL ELEVATION: -WATER LEVEL: -DATUM: SUBASE WEATHER: 85', HAZY, HUMID

INSPECTOR: ERIK NESS CHECKED BY: ERIK NESS

	T		γ						,					,	
		/ERY		SOIL DESCRIPTION	(FT.)	>C	IS 0N	IUA ITA	AL M.			ANAL YSIS	06Y	(FT.)	WELL
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6	RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	- 1	NONE	STAIN	SHEEN	HEAVY	ቯ*	RAD.	SAMPLE AN	LITHOLOGY	DEPTH	
0-2	11	0	NA	ALL ROOTS AND WATER	0-					NA	NA			0.0	
2-4	woн	0	NA							NA	NA				
4-6	WOH	100	0.6	Grey, SILT and CLAY, trace fine sand, trace shell fragments, wet, DREDGE SPOIL	5-					0	30				
				AUGER TO 10.0 feet					-				XX	6.0	
10-12	WOH	100	14.0	Grey, SILT and CLAY, little fine sand, trace shell fragments, wet, DREDGE SPOIL	10-					0	30			10.0	
				AUGER TO 15.0 feet									XX	12.0	
45 47	WOH	100		Grey, SILT and CLAY, little fine sand, trace shell fragments, wet, DREDGE SPOIL	15									15.0	
15-17		100	8.0	AUGER TO 20.0 feet						0	30			17.0	
															į
20-22	1 1 1 1	100	10.0	Grey, SILT and CLAY, little fine sand, trace shell fragments, wet, DREDGE SPOIL	20-					0	30			20.0	

ATLANTIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10

LOCATION: AREA A WETLAND DATE STARTED: 8/31/90 DATA COMPLETED: 8/31/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 71.9 PROTECTIVE CASING ELEVATION: -WELL ELEVATION: -

WATER LEVEL: -DATUM: SUBASE

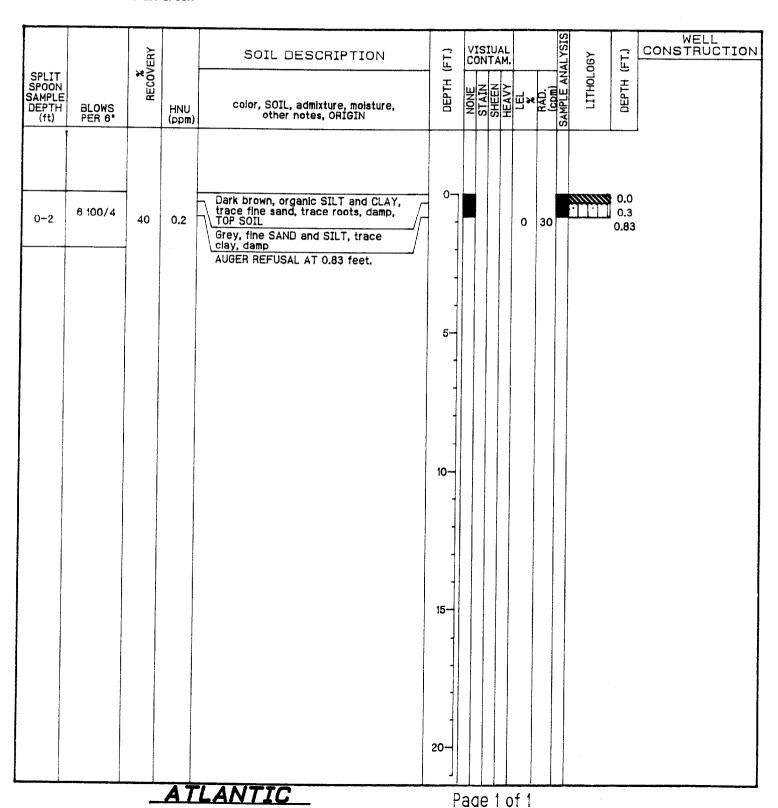
WEATHER: 85', HAZY, HUMID INSPECTOR: ERIK NESS CHECKED BY: ERIK NESS

						T		\top			တ			WELL
		ERY		SOIL DESCRIPTION	(FT.)	CC	SIUA NTAI	M.			ANAL YSIS	OGY	(FT.)	CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6"	RECOVERY	HNU (ppm)	color, SOIL, admixture, molsture, other notes, ORIGIN	DEPTH	NONE	STAIN	HEAVY -] 	RAD. (CDM)	SAMPLE AN	LITHOLOGY	DEPTH	
20-22	11			AUGER TO 25.0 feet	21-			and the second s					22.0	
25-27	1 1 10 60	100	NA	Grey, SILT and CLAY, little fine sand, trace shell fragments, wet, DREDGE SPOIL Dark brown, organic SILT and CLAY, trace fine sand, trace roots, wet, TOP SOIL Grey, fine SAND and SILT, trace clay, wet, END BORING AT 27.0 feet	26				NA	NA	K \ X X		25.0 26.0 26.3 27.0	
					31									
					38-									
		-	A	TLANTIC	41-	0 ^	ae :	2	n f	2				

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: AREA A WETLAND DATE STARTED: 9/08/90 DATA COMPLETED: 9/06/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.


DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 83.5 PROTECTIVE CASING ELEVATION: -WELL ELEVATION: -WATER LEVEL: -DATUM: SUBASE

WEATHER: 80', HAZY, HUMID INSPECTOR: ERIK NESS CHECKED BY: ERIK NESS

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: AREA A WETLAND DATE STARTED: 9/08/90 DATA COMPLETED: 9/08/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 70.3
PROTECTIVE CASING ELEVATION: WELL ELEVATION: WATER LEVEL: DATUM: SUBASE

WEATHER: 80°, HAZY, HUMID INSPECTOR: ERIK NESS CHECKED BY: ERIK NESS

		VERY		SOIL DESCRIPTION	(FT.)	VI	SIC	JAL AM.			ALYSIS	,06Y	(FT.)	CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6	RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STAIN	HEAVY	LEL.	RAD.	SAMPLE AN	LITHOLOGY	рертн	
0-2	WOH 11	50	0.2	Dark brown, ORGANIC SILT and ROOTS, wet Grey, SILT and CLAY, trace fine sand, trace shell fragments, wet, DREDGE SPOIL	0-7				1	30			0.0 0.3	
2-4	МОН	100	0.2	DHEDGE SPOIL					1	30				
4-6	wон	100	7.0	Grey, SILT and CLAY, little fine sand, trace shell fragments, wet, DREDGE SPOIL	5-				1	50				
				AUGER TO 10.0 feet								KX)	6.0	
					-									
0-12	WOH	0	NA	NO RECOVERY	10-				NA	NA			10.0	
2-14	WOH 1 11	0	NA						NA	NA				
				AUGER TO 15.0 feet	4 4								14.0	
5-17	WOH 1	100	5.0	Grey, SILT and CLAY, little fine sand, trace shell fragments, wet, DREDGE SPOIL	15-				1	40			15.0	
			-	AUGER TO 20.0 feet								XX	17.0	
0-22	WOH 1			Grey, SILT and CLAY, little fine	20-								20.0	
5-22	11	100	5.0	sand, trace shell fragments, wet, DREDGE SPOIL					1	40	K	\times		

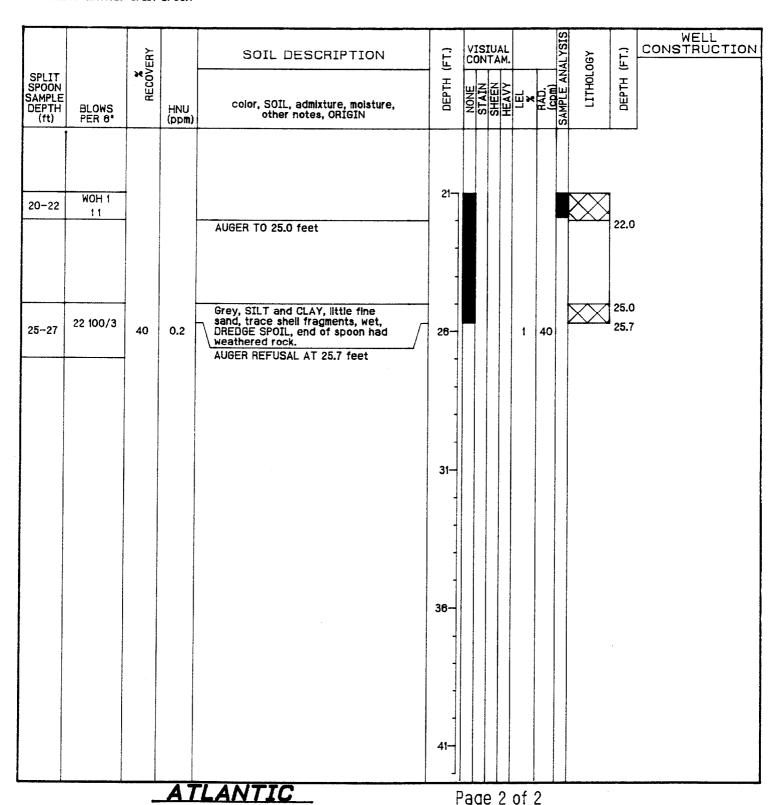
ATLANTIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10
LOCATION: AREA A WETLAND
DATE STARTED: 9/06/90
DATA COMPLETED: 9/06/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON


DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 70.3
PROTECTIVE CASING ELEVATION: WELL ELEVATION: -

WATER LEVEL: -DATUM: SUBASE

WEATHER: 80°, HAZY, HUMID INSPECTOR: ERIK NESS CHECKED BY: ERIK NESS

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10
LOCATION: AREA A WETLAND
DATE STARTED: 9/05/90
DATA COMPLETED: 9/05/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 77.0
PROTECTIVE CASING ELEVATION: WELL ELEVATION: WATER LEVEL: DATUM: SUBASE
WEATHER: 65°, PARTLY CLOUDY

INSPECTOR: ERIK NESS
CHECKED BY: ERIK NESS

						Τ,						SIS			WELL CONSTRUCTION
00:		RECOVERY		SOIL DESCRIPTION	FT.)	Č	ON TO	TAI	Й.			NALY NALY	LITHOLOGY	(FT.)	CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6	RECO	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	ANON	STAIN	SHEEN	HEAVY	<u></u>	RAD. (cpm)	SAMPLE	ГІТНО	DEPTH	
0-2 2-4 4-6	WOH 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	90 80 100	2.0	Dark brown, ORGANIC SILT and ROOTS, moist Grey brown, SILT and CLAY, trace fine sand, mottled, moist, DREDGE SPOIL Grey brown, SILT and CLAY, trace fine sand, trace shell fragments, moist, DREDGE SPOIL Grey, SILT and CLAY, trace fine sand, trace shell fragments, wet, DREDGE SPOIL AUGER TO 10.0 feet	5-				**************************************	1 1	30 30			0.0 0.4 6.0	
10-12	WOH 1	100	0.2	Grey, SILT and CLAY, trace fine sand, trace shell fragments, wet DREDGE SPOIL AUGER TO 13.5 feet	10-	4				1	30			10.0	
13.5–15.5	100/2	100	0.2	Grey, SILT and CLAY, trace fine sand, trace shell fragments, wet DREDGE SPOIL AUGER REFUSAL AT 13.7 feet	15-					1	30			13.5 13.7	
			A	<u> </u>	20-	+	30	P	1 (of 1					

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: AREA A WETLAND DATE STARTED: 8/30/90 DATA COMPLETED: 8/30/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 79.8 PROTECTIVE CASING ELEVATION: -

WELL ELEVATION: -WATER LEVEL: -DATUM: SUBASE

WEATHER: 85°, HAZY, HOT AND HUMID

INSPECTOR: ERIK NESS CHECKED BY: ERIK NESS

						v	IS	IU	ΑL			SIS		~;	WELL CONSTRUCTION
CDLIT		RECOVERY		SOIL DESCRIPTION	(FT.)	C	70 70	IT.	М.		T	ANALYSIS	LITHOLOGY	(FT.)	
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6*	RECO	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STATN	SHEEN	HEAVY	<u>ы</u> *	RAD.	SAMPLE /	HTI	DEPTH	
	2 1			ROOTS, NO SOIL RECOVERY	0-7									0.0	
0-2	11	0	NA		† -					NA	NA	`		1.0	
2-4	МОН	30	1		-					0	30				
4-6	WOH 11	0	NA		5					ΝA	N	4			
6-8	11 WOH WOH	100	2.0	Grey, SILT and CLAY, trace fine sand, trace shell fragments,wet, DREDGE SPOIL	-					0	30)		6.0	
	AUGER			AUGER TO 10.0 feet	-									8.0	
10-12	WOH WOH	100	1.0	Grey, SILT and CLAY, trace fine sand, trace shell fragments,wet, DREDGE SPOIL	10-					0	30			10.0 11.5	
12-14	2 4 8 9	75	0.8	Dark brown, organic SILT and CLAY, trace fine sand, trace roots, TOP SOIL Grey, fine SAND and SILT, trace clay, wet Grey, fine SAND, some slit, wet						0	30			11.7 12.0 14.0	•
				END OF BORING AT 14.0 feet	15-										;
					-										
				·	20-										
	<u></u>		A	CLANTIC		Pá	3C	ie Ie	1	of	1		J		

BORING LOG 2W MW 1S

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: AREA A WETLAND DATE STARTED: 08/24/90 DATA COMPLETED: 08/24/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 128.05
PROTECTIVE CASING ELEVATION: -

WELL ELEVATION: - WATER LEVEL: -

DATUM: SUBASE

WEATHER: 70', PARTLY CLOUDY

INSPECTOR: MICHAEL NEJDL AND ERIK NESS

CHECKED BY: ERIK NESS

SPLIT SPOON SAMPLE DEPTH	BLOWS PER 6°	* RECOVERY	HNU	SOIL DESCRIPTION color, SOIL, admixture, moisture, other notes, ORIGIN	ОЕРТН (FT.)	NONE De	ISO NEVER	SIL TAIL	HEAVY WAY	LEI.	RAN	(com)	AMPLE ANALYSIS	LITHOLOGY	DEPTH (FT.)	WELL CONSTRUCTION
(ft)			(ppm)	Brown, fine to coarse SAND and GRAVEL, trace silt, damp	0-									 , , o ,	0.0	
2-4	4 8 11 11 11 14 32 100/6	85 100	0.1	Red-brown, fine SAND and SILT, trace gravel, damp						0		60			2.0	
4-6	100/1	0	NA	AUGER REFUSAL AT 4.0 feet, no water encountered, no well installed	5-					NA	. 1	NA			4.0	
					10-											
			The state of the s													
					15-											
					20-											
				EL ANTIO												<u> </u>

ATLANTIC

BORING LOG 2W MW 2S

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: AREA A WETLAND DATE STARTED: 08/23/90 DATA COMPLETED: 08/23/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 110.45
PROTECTIVE CASING ELEVATION: -

WELL ELEVATION: -WATER LEVEL: -DATUM: SUBASE

WEATHER: 70', CLOUDY

INSPECTOR: MICHAEL NEJDL AND ERIK NESS

CHECKED BY: ERIK NESS

BLOWS PER 6"	* RECOVERY	HNU (ppm)	SOIL DESCRIPTION color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH (FT.)	NON	STAIN	HEAVY WE'L	ם	RAD.	SAMPLE ANALYSIS	LITHOLOGY	DEPTH (FT.)	WELL CONSTRUCTION
4 5 9 10 4 5 3 2 5 64 100/2	70 45 50	0.0	Brown, medium to coarse SAND and GRAVEL, damp, FILL Brown, fine SAND and GRAVEL, trace silt, trace asphalt, damp, FILL Dark brown, fine SAND and SILT, trace asphalt, trace roots, moist, FILL AUGER REFUSAL AT 5.0 feet, no water encountered, no well installed CORED TO 23.0 feet	0				0	60		DODODODO DODODODO	5.0	
				10-									
				15-									
	4 5 9 10 4 5 3 2 5 64	4 5 9 10 70 4 5 3 2 45	BLOWS HNU (ppm) 45 910 70 0.0 45 32 45 0.0	BLOWS PER 8° (ppm) other notes, ORIGIN Brown, medium to coarse SAND and GRAVEL, damp, FILL Brown, fine SAND and GRAVEL, trace silt, trace asphalt, damp, FILL Dark brown, fine SAND and SILT, trace asphalt, trace roots, moist, FILL Dark brown, fine SAND and SILT, trace asphalt, trace roots, moist, FILL AUGER REFUSAL AT 5.0 feet, no	Brown, medium to coarse SAND and GRAVEL, damp, FILL Brown, fine SAND and GRAVEL, trace slit, trace asphalt, damp, FILL Dark brown, fine SAND and SILT, trace asphalt, trace roots, moist, FILL AUGER REFUSAL AT 5.0 feet, no water encountered, no well installed CORED TO 23.0 feet	Brown, medium to coarse SAND and GRAVEL, damp, FILL Brown, fine SAND and GRAVEL, trace silt, trace asphalt, damp, FILL Dark brown, fine SAND and SILT, trace asphalt, trace roots, moist, FILL AUGER REFUSAL AT 5.0 feet, no water encountered, no well installed CORED TO 23.0 feet	Brown, medium to coarse SAND and GRAVEL, damp, FILL Brown, fine SAND and GRAVEL, trace silt, trace asphalt, damp, FILL Dark brown, fine SAND and SILT, trace asphalt, trace roots, moist, FILL AUGER REFUSAL AT 5.0 feet, no water encountered, no well installed CORED TO 23.0 feet	Brown, medium to coarse SAND and GRAVEL, damp, FILL Brown, fine SAND and GRAVEL, trace silt, trace asphalt, damp, FILL Dark brown, fine SAND and SILT, trace asphalt, trace roots, moist, FILL AUGER REFUSAL AT 5.0 feet, no water encountered, no well installed CORED TO 23.0 feet	Brown, medium to coarse SAND and GRAVEL, damp, FILL Brown, fine SAND and GRAVEL, trace silt, trace asphalt, damp, FILL Dark brown, fine SAND and SILT, trace asphalt, trace roots, moist, FILL AUGER REFUSAL AT 5.0 feet, no water encountered, no well installed CORED TO 23.0 feet	3 2 45 0.0 Brown, medium to coarse SAND and GRAVEL, damp, FILL 0 60 Brown, fine SAND and GRAVEL, trace silt, trace asphalt, damp, FILL 0 60 Dark brown, fine SAND and SILT, trace asphalt, trace roots, moist, FILL AUGER REFUSAL AT 5.0 feet, no water encountered, no well installed CORED TO 23.0 feet	Brown, medium to coarse SAND and GRAVEL, damp, FILL Brown, fine SAND and GRAVEL, trace slit, trace asphalt, damp, FILL Dark brown, fine SAND and SILT, trace asphalt, trace roots, moist, FILL AUGER REFUSAL AT 5.0 feet, no water encountered, no well installed CORED TO 23.0 feet	BLOWS PER 81 HNU color, SOIL, admixture, moisture, other notes, ORIGIN 4 5 9 10 70 0.0 Brown, medium to coarse SAND and GRAVEL, damp, FILL Brown, fine SAND and GRAVEL, trace silt, trace asphalt, damp, FILL Dark brown, fine SAND and SILT, trace asphalt, trace roots, moist, FILL Dark brown, fine SAND and SILT, trace asphalt, trace roots, moist, FILL AUGER REFUSAL AT 5.0 feet, no water encountered, no well installed CORED TO 23.0 feet	Brown, medium to coarse SAND and GRAVEL, damp, FILL 5 64 100/2 50 1.2 Brown, fine SAND and GRAVEL, trace silt, trace asphalt, damp, FILL Dark brown, fine SAND and SILT, trace asphalt, trace roots, moist, FILL AUGER REFUSAL AT 5.0 feet, no water encountered, no well installed CORED TO 23.0 feet

ATLANTIC

BORING LOG 2W MW 3S

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10
LOCATION: AREA A WETLAND
DATE STARTED: 08/22/90
DATA COMPLETED: 08/22/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 82.8

PROTECTIVE CASING ELEVATION: 84.50

WELL ELEVATION: 84.37

WATER LEVEL: 73.78 (03/21/91)

DATUM: SUBASE

WEATHER: 80°, LIGHT RAIN INSPECTOR: MICHAEL NEJDL CHECKED BY: ERIK NESS

SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6°	* RECOVERY	HNU (ppm)	SOIL DESCRIPTION color, SOIL, admixture, moisture, other notes, ORIGIN	оертн (FT.)	NONE NO STATE OF THE STATE OF T	<u>디</u> *	RAD. (cpm)	SAMPLE ANALYSIS	LITHOLOGY	DEPTH (FT.)	WELL CONSTRUCTION
0-2	5 8 7 5	60	0.0	Dark brown, fine SAND and SILT, trace root fragments, damp, TOP SOIL Brown, fine to medium SAND and GRAVEL, damp, grading to wet at	0-		0	50		10000 D	0.0 0.35	GROUT
2-4	3 7 7 5	15	0.0	10.0 feet, FILL			0	35	0	2000		* - 9FC
4-8	7 9 9 8	20	0.0		5		0	40	0	0000		
6-8	8 5 4 4	10	0.0		-		0	35	0	0000		ENTONI
8-10	2 4 15 24	15	NA		1		NA	NA	0	70.00		不 : =:
10-12	13 15 5 4	45	0.0	Brown, coarse SAND and GRAVEL, some silt, wet, FILL	10-		o	50	0	2000		
12-14	3 4 3 4	75	0.0	Red-brown, coarse SAND and GRAVEL, trace silt, wet, FILL	-		0	30	0	2000		SLOTTED PVC ———————————————————————————————————
14-16	11	85	0.1	Grey, SILT and CLAY, trace shell fragments, wet, DREDGE SPOIL	15		0	50		7	15.0	
16-18	11 21	100	18.0		-		0	40				0.01
18-20	2 2 2 2	70	80.0				0	20		\bigotimes		
20-22	WOH WOH 11	85	75.0	Dark grey, SILT and CLAY, trace shell fragments, wet, heavy oil stain, DREDGE SPOIL	20-	Page 1	0	30			i	

BORING LOG 2W MW 3S

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: AREA A WETLAND DATE STARTED: 08/22/90 DATA COMPLETED: 08/22/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 82.8

PROTECTIVE CASING ELEVATION: 84.50

WELL ELEVATION: 84.37

WATER LEVEL: 73.78 (03/21/91)

DATUM: SUBASE

WEATHER: 60°, LIGHT RAIN INSPECTOR: MICHAEL NEJDL

CHECKED BY: ERIK NESS

SPLIT		RECOVERY		SOIL DESCRIPTION	н (FT.)	VI CC	ISI	UAL AM.		RAD.	ANA! YSTS	LITHOLOGY	н (FT.)	CONST	ELL RUCTIO	NC
SPOON SAMPLE DEPTH (ft)	BLOWS PER 6*	REC	HNU (pp m)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STAIN	SHEEN	TEI	RAD.	SAMPI E	III	ОЕРТН			
20-22	WOH WOH			AUGER TO 25.0 feet	21-								22.0	0.01 SLOTTED PVC		
25-27	wон wон 1 1	100	12.0	Dark brown, SILT and CLAY, trace shell fragments, wet, DREDGE SPOIL AUGER TO 30.0 feet	26-				19	4	0		25.0 27.0			
30-32	WOH WOH 1 1	100	35.0	Dark brown, SILT and CLAY, trace shell fragments, wet, DREDGE SPOIL AUGER TO 35.0 feet	31-				0	4	0		30.0		SAND	
35–37	11 67	100	1.0	Red-brown, fine SAND and SILT, trace roots, wet, TOP SOIL AUGER TO 40.0 feet	36-				o	3			35.0 37.0			
40-42	19 17 11 100/3	10	0.7	Brown, fine SAND and SILT, trace gravel, wet, AUGER REFUSAL AT 41.5 feet	41-				0	4	0		40.0			

ATLANTIC

Page 2 of 2

BORING LOG 2W MW 5S

PROJECT: IR STUDY NSB - NLON

PROJECT. NO: 1258-10 LOCATION: AREA A WETLAND DATE STARTED: 9/4/90 DATA COMPLETED: 9/4/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 73.5

PROTECTIVE CASING ELEVATION: 77.18

WELL ELEVATION: 78.48

WATER LEVEL: 73.80 (03/21/91)

DATUM: SUBASE

WEATHER: 75", CLEAR SKIES

INSPECTOR: ERIK NESS

CHECKED BY: ERIK NESS

SPLIT		* RECOVERY		SOIL DESCRIPTION	TH (FT.)	F	T	Т	IAL AM.	 		a vivi	LITHOLOGY	DEPTH (FT.)	COI	WE VSTR	LL UCTION	1
SPOON SAMPLE DEPTH (ft)	BLOWS PER 6"	## ##	HNU (ppm)	color, SOIL, admixture, molsture, other notes, ORIGIN	DEPTH	1011	ZON C	SIA	HEA	回	2 4	(CD)						
	2 2			Dark brown, organic SILT, trace roots, damp, TOP SOIL.	0-									0.0			¥\$¥^¥ LeRouT	
0-2	2 2	100	0.6	Gray brown, SILT and CLAY, trace fine Sand, mottled, moist, DREDGE SPOIL		+				0		30	\bigotimes					
2-4	3 2 3 2	100	0.6	Grading to trace shell fragments						0		40	\bigotimes	X			BENTONITE. SEAL	
4-6	1 2 1 2	100	0.6	Grading to wet.	5-	_				o)	80		X X			98	
				AUGER TO 10.0 feet		, , , , , , , , , , , , , , , , , , , ,								8.0	0.01 SLOTTED PVC		SAND —	
					40	1									1			
10-12	1 1 2 11	30	0.6	Gray brown, SILT and CLAY, trace fine Sand, mottled, wet, DREDGE SPOIL	10					c)	30		10.	0			
				AUGER TO 13.0 feet		+								13.		E		
13-13.2	100/2"	100	0.6	Gray, fine to coarse SAND, little fine Gravel, little Silt, wet. END OF BORING AT 13.2 feet	45					C)	40		13.	2			
					15													
						1												
					20													

ATLANTIC

BORING LOG 2W MW 6S

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: AREA A WETLAND DATE STARTED: 10/03/90

DATA COMPLETED: 10/03/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JOE RAAB

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 83.4

PROTECTIVE CASING ELEVATION: 85.03

WELL ELEVATION: 84.87

WATER LEVEL: 77.04 (03/21/91)

DATUM: SUBASE

WEATHER: 70°, CLEAR SKIES

INSPECTOR: ANNA SULLIVAN AND ERIK NESS

CHECKED BY: ERIK NESS

SPLIT		* RECOVERY		SOIL DESCRIPTION	IH (FT.)		П	UAL TAM	†	T	Vere	LITHOLOGY	TH (FT.)	WELL
SPOON SAMPLE DEPTH (ft)	BLOWS PER 6°	E.	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	ANCK FINCK	STAI	SHEE		3 %	(CDM)	TIT	DEPTH	
0-2	18 18	75	0.1	Dark brown, organic SILT and CLAY, some sand, trace roots, damp, TOP	= 0-	-			2	2	50	.V. O.	0.0	
2-4	8 8 9 10	100	0.1	Light brown, fine to coarse SAND, some silt, trace gravel, damp, FILL Gray, SILT and CLAY, some fine Sand, moist, mottled, DREDGE SPOIL					2	2	50		×	9 * *
4-8	7 7 9 11	100	0.1		5				2	2	40		×	PVC -+
6-8	20 8 8 7	30	0.1	Brown, fine to medium SAND, trace gravel, trace slit, trace wood, wet at 8.8 feet					2	2	30	0. 0.		H
8-10	7 9 32 65	75	0.1	Brown, fine SAND and GRAVEL, trace silt, wet AUGER REFUSAL AT 9.5 feet					2	2	30	0.00	8.3	
					10-									
Access to the second se														
					15-									
					20-	4								
				FL ANITIC		1	1							

ATLANTIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10
LOCATION: AREA A LANDFILL
DATE STARTED: 9/25/90

DATA COMPLETED: 9/25/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JOE RAAB

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 84.0
PROTECTIVE CASING ELEVATION: WELL ELEVATION: WATER LEVEL: DATUM: SUBASE

WEATHER: 65°, CLEAR SKIES INSPECTOR: ERIK NESS CHECKED BY: ERIK NESS

	· · ·					Ι						SIS			WELL
		/ERY		SOIL DESCRIPTION	(FT.)	č	ON.	UAI FAM	1.			NALY	-067	(FT.)	CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 8*	RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STAIN	STEEN	HAV.	่าื≫	RAD. (CDM)	SAMPLE A	LITHOLOGY	ОЕРТН	
				Brown, fine to medium SAND, trace	- 0-7								V 0	0.0	
0-2	3 2 4 6	50	0.2	silt, trace gravel, trace asphalt, damp, FILL	-					1	30		DODE		
2-4	14 19 9 10	50	0.2							1	30		000		
4-6	7 6 8 9	0	NA	NO RECOVERY	5-					NA	NA			4.0	
8-8	4 6 7 9	10	0.2	Brown, fine to medium SAND, trace silt, trace gravel, trace plastic, moist, FILL						1	40		0000	6.0	
8-10	4 4 4 3	4.	0.2	Brown, fine to medium SAND, some silt, wet, FILL						1	40		000		
10-12	2 2 2 2	0	NA	NO RECOVERY	10-					NA	NA			10.0	
12-14	3 3 4 3	100	0.2	Grey, SILT and CLAY, trace fine sand, trace shell fragments, trace wood fragments, wet, DREDGE SPOIL						1	30			12.0)
14-16	2 2 2 4	100	0.2		15-					1	30				
16-18	2 2 1 1	0	NA	NO RECOVERY						NA	NA			16.0	
18-20	2 2 2 2	10	1.0	Grey, SILT and CLAY, trace fine sand, trace shell fragments, trace wood fragments, wet, DREDGE SPOIL						1	40			18.0)
				AUGER REFUSAL AT 20.0 feet	20-									20.0	0

ATLANTIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: AREA A LANDFILL DATE STARTED: 08/18/90 DATA COMPLETED: 08/16/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: SCOTT METCALF

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 84.6
PROTECTIVE CASING ELEVATION: WELL ELEVATION: WATER LEVEL: DATUM: SUBASE
WEATHER: 85°, CLEAR SKIES
TUSPECTOR: MICHAEL NEJD!

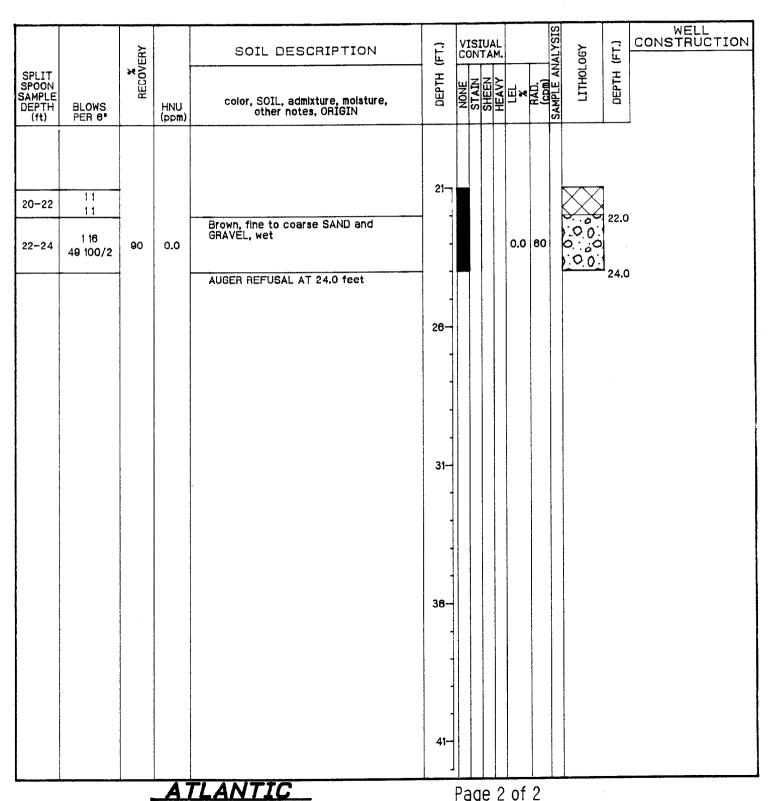
INSPECTOR: MICHAEL NEJDL CHECKED BY: ERIK NESS

						,								1
		ERY		SOIL DESCRIPTION	(FT.)	C.C.	SIU	JAL AM.			ANALYSIS	.0GY	(FT.)	CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6°	# RECOVERY	UNH (mqq)	color, SOIL, admixture, moisture, other notes, ORIGIN	T	NONE	STAIN	HEAVY	ᆸᄽ	RAD. (CDM)	SAMPLE AN	LITHOLOGY	DEPTH	
0-2	5 16 16 17	55	2.0	Brown, fine SAND and GRAVEL, damp, FILL	0-				0.0	60			0.0	
2-4	26 14 8 5	45	21.0	Dark brown, fine SAND and GRAVEL, damp, FILL	-				0.0	80				
4-6	18 7 6 5	60	4.0	Grey-brown, fine SAND and GRAVEL, moist, FILL	5				0.0	55		000		
6-8	11 8 7 9	35	5.5	Dark brown, medium SAND and GRAVEL, moist, FILL					0.0	50		0000		
8-10	11 5 6 9	10	2.0	Dark brown, medium SAND, some gravel, moist, FILL					0.0	50		000		
10-12	7 2 1 2	10	3.0	Brown, medium SAND, some gravel, moist, FILL	10-				0.0	40		000		
12-14	11	95	1.3	Dark brown, coarse SAND and GRAVEL, wet, FILL Dark brown, SILT and CLAY, wet, DREDGE SPOIL					0.0	60			12.4	
14-16	11	0	NA	NO RECOVERY	15				NA	NA			14.0	
16-18	NA	0	NA						NA	NA				
18-20	11	5	2.0	Dark brown, SILT and CLAY, some fine sand, wet, oil sheen on water, DREDGE SPOIL	-				0.0	50			18.0)
20-22	11	45	1.0	Grey-brown, SILT and CLAY, wet, DREDGE SPOIL	20-				NA	NA		\boxtimes	1	

ATLANTIC

PROJECT: IR STUDY NSB - NLON PROJECT NO: 1258-10 LOCATION: AREA A LANDFILL DATE STARTED: 08/18/90 DATA COMPLETED: 08/16/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.


DRILLER: SCOTT METCALF

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 84.6
PROTECTIVE CASING ELEVATION: WELL ELEVATION: WATER LEVEL: DATUM: SUBASE

WEATHER: 85°, CLEAR SKIES INSPECTOR: MICHAEL NEJDL CHECKED BY: ERIK NESS

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10

LOCATION: AREA A LANDFILL DATE STARTED: 9/25/90 DATA COMPLETED: 9/25/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JOE RAAB

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 84.6
PROTECTIVE CASING ELEVATION: WELL ELEVATION: WATER LEVEL: -

MATER LEVEL: -DATUM: SUBASE

WEATHER: 75°, CLEAR SKIES INSPECTOR: ERIK NESS

		RECOVERY		SOIL DESCRIPTION	(FT.)	V)	IS:	IUA MAT	L.			ANALYSIS	LOGY	(FT.)	WELL
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6	RECO	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STAIN	SHEEN	HEAVY	⊒ ∗	RAD. (com)	SAMPLE A	LITHOLOGY	DEPTH	
				Traver time to made CAND come	0-7								.VO .	0.0	
0-2	4 7 9 7	80	0.4	Brown, fine to medium SAND, some gravel, trace silt, damp, FILL Dark brown staining at 1.5 to 1.8 feet. Brown, fine to medium SAND, some gravel, trace silt, damp, FILL	-					1	40		2000		
2-4	3 5 5 8	30	0.4		-					1	50		0000		
4-6	4 4 5 9	10	0.4	Brown, fine to medium SAND, some gravel, trace slit, damp, FILL	5-					1	30		0,000		
6-8	4 3 5 7	5	0.4	Small piece of wood in shoe of spoon.	-					1	30		DOPP		
8-10	4 5 2 1	5	0.4	Small flakes of rusted metal, wet at 10.0 feet, FILL	-			10.00		1	30		ODOO		
10-12	1 2	0	NA	NO RECOVERY	10-					NA	NA			10.0	
12-14	11	75	1.0	Grey, SILT and CLAY, trace fine sand, trace shell fragments, wet, DREDGE SPOIL	-					1	40			12.0)
14-18	AUGER	NA	NA	AUGER TO 18.0 feet	15-					NA	NA			14.0)
16-18	AUGER	NA	NA							NA	NA				
18-20	100/1	NA	NA	REFUSAL AT 18.0 feet	20-					NA	NA			18.0)
			A	TLANTIC	20-	Ps	100	۵	1 (of '	1			,	

PROJECT: IR STUDY NSB - NLON PROJECT NO: 1258-10 LOCATION: AREA A LANDFILL

DATE STARTED: 9/20/90 DATA COMPLETED: 9/20/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JOE RAAB

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 88.2 PROTECTIVE CASING ELEVATION: -WELL ELEVATION: -WATER LEVEL: -DATUM: SUBASE WEATHER: 60°, PARTLY CLOUDY INSPECTOR: MICHAEL NEJDL

SPLIT		.* RECOVERY		SOIL DESCRIPTION	н (FT.)	CC	ГИC	UAL FAM.	+			ANALYSIS	LITHOLOGY	'н (FT.)	WELL
SPOON SAMPLE DEPTH (ft)	BLOWS PER 6"	REC	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NON	STAI	SHEE	ᄪ	2 2	CONT.	SAMPLE		DEPTH	
					0-7							-	[instant	0.0	
0-2	19 17 100/2	50	0.4	Brown, medium SAND and GRAVEL, damp, FILL Brown, medium SAND and GRAVEL, blue ash, wood fragments, red brick fragments, damp, FILL	4				0		50		0000	3.3	
2-4	6 12 33 10	70	0.4		-				0		40		000		
4-6	7 6 11 4	40	0.7	Brown to blue, fine SAND and ASH, concrete, damp, FILL	5-				o		55	7. 4.7	apop a		
6-8	7 11 4 4	35	0.7	Dark brown, medium to coarse, SAND and ASH, wood, concrete fragments, wet at 8.0 feet, FILL					C		50		2000		
8-10	13 7 7 6	25	0.9	Dark brown, fine to medium SAND and ASH, wet, FILL	-				C		50	7: 4:	10000		
10-12	7 5 5 6	10	0.4		10				c		40	7	0000		
12-14	11	50	0.4	Grey, SILT and CLAY, trace fine sand, trace shell fragments, wet, DREDGE SPOIL	-				C		30	K K K		12.5	
14-16	11 11	80	0.4		15-				c		50	K	\Rightarrow		
				AUGER REFUSAL AT 17.0 feet End of boring at 17.0.									Y	17.0	
					20-										
			A	TLANTIC		Pa	D	e 1	of	1					

PROJECT: IR STUDY NSB - NLON PROJECT NO: 1258-10 LOCATION: AREA A LANDFILL DATE STARTED: 9/21/90 DATA COMPLETED: 9/24/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JOE RAAB

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 88.0 PROTECTIVE CASING ELEVATION: -WELL ELEVATION: -WATER LEVEL: -DATUM: SUBASE

WEATHER: 60', CLEAR SKIES INSPECTOR: MICHAEL NEJDL CHECKED BY: ERIK NESS

						,,	reti i	,		010	CTC			WELL CONSTRUCTION
05:		RECOVERY		SOIL DESCRIPTION	(FT.)	č	DNTA	м.			MALT	LITHOLOGY	+ (FT.)	55/15/1/03/15/1
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6"	RECO	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STAIN	HEAVY	□*	(CDM)	SAMPLE	ГІТНС	DEPTH	
0-2	7 55	70	0.7	Light brown, medium SAND and GRAVEL, some ash, asphalt, damp, FILL	0-				0	50	7.0	V 00	0 .0	
2-4	22 17 10 32 100/5	10	1.0	ASPHALT Dark brown, fine to medium SAND, some wood fragments, damp, FILL					0	NA		00000		
4-6	7 3 1 1	30	0.4	Dark brown, fine to medium SAND, some wood fragments, damp, FILL	5-				0	80	- 1	00000		
6-8	6 3 8 7 4	30	1.0	Dark brown, fine to medium SAND and GRAVEL, wet at 8.0 feet, FILL	-				0	45		000		
8-10	10 13 4 8	80	1.6	Dark brown, fine SAND and GRAVEL, wet, FILL	10-				0	40		000	10.0	1
				AUGER REFUSAL AT 10.0 feet	-									
					15-									
					20-				-					
<u> </u>	· · ·		A.	TLANTIC		Pá	age	1	of	1				

PROJECT: IR STUDY NSB - NLON PROJECT NO: 1258-10 LOCATION: AREA A LANDFILL DATE STARTED: 08/08/90 DATA COMPLETED: 08/08/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 88.4

PROTECTIVE CASING ELEVATION:
WELL ELEVATION:
WATER LEVEL:
DATUM: SUBASE

WEATHER: 75°, LIGHT RAIN
TAISPECTOR: MICHAEL NEID!

INSPECTOR: MICHAEL NEJDL
CHECKED BY: ERIK NESS

SPLIT SPOON SAMPLE		* REGOVERY		SOIL DESCRIPTION	ОЕРТН (FT.)	CC	NIS: TNC	AM.	┢	ŖĀD.	LE ANALYSIS	LITHOLOGY	DEPTH (FT.)	WELL CONSTRUCTION
DEPTH (ft)	BLOWS PER 6°		HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	ă	ž	ST	등 등		Œ,	SAMPLE		٩	
0-2	15 20 2 2 29	65	0.4	Brown, fine to medium SAND and GRAVEL, trace glass, trace brick fragments, damp, FILL	0-7				0	37	.5	\$ 0.00 \$ 0.00	0.0	
2-4	NA	60	0.4	Brown, fine to coarse SAND and GRAVEL, damp, FILL					0	4	0	0000	4.0	
5-7	14 19 20 30	60	0.4	AUGER TO 5.0 feet Brown, fine SAND and SILT, trace gravel, trace ash, moist, FILL	5-				o	6	0	V V V	5.0	
7-9	3 4 4 5	0	NA	NO RECOVERY	-				N	A N	A		7.0	
9-11	3 2 2 3	25	0.4	Brown, fine to coarse SAND, moist, FILL	10-				0	4	0	000	9.0	
11-13	2 3 3 4	35	NA	Brown, fine to coarse SAND, some silt, wet, FILL					o	5	0	000		
13-15	2 1 1 2	80	NA	Brown, SILT and CLAY, trace fine sand, wet, DREDGE SPOIL	15-				C) 4	0		13.0	J
15-17	4 4 3 11	100	NA	Grey-brown, SILT and CLAY, trace fine sand, wet, DREDGE SPOIL	19-				C) 4	0		×	
17-19	11 25 30 32	100	N A	·					C) 3	0		× 19.	0
19-21	32 35 55 100/3	90	NA	Brown, coarse SAND and GRAVEL, wet	20-				C) 4	10	0.00		
				AUGER REFUSAL AT 21.0 feet									21.0	U

ATLANTIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: AREA A LANDFILL DATE STARTED: 08/07/90 DATA COMPLETED: 08/07/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 87.4

PROTECTIVE CASING ELEVATION: -

WELL ELEVATION: -WATER LEVEL: -DATUM: SUBASE

WEATHER: 75°, CLOUDY WITH SHOWERS INSPECTOR: ERIK NESS AND FRANCIS DUMONT

		ВУ		SOIL DESCRIPTION	(FT.)	V.	IS:	UA TA	L M.			LYSIS)GY	(FT.)	WELL CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6º	RECOVERY	(Mqq)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH (NONE	STAIN	SHEEN	HEAVY	ቯ*	RAD. (com)	SAMPLE AN	LITHOLOGY	ОЕРТН (
				Grov. coarse SAND and GRAVE!	0-1								V. 0.	0.0	
0-2	9 9 9 28	10	0.0	Grey, coarse SAND and GRAVEL, damp, FILL						0	40		0.00		
2-4	4 6 7 4	10	0.0	Brown fine SAND, some gravel, trace cardboard, damp, FILL						0	40		0000		
4-6	4 8 3 2	30	0.0	Grey, SILT and CLAY, trace sand, trace gravel, damp, DREDGE SPOIL	5					0	40			4.0	
6-8	4 8 8 8	10	0.0	Grey, fine SAND and SILT, trace gravel, damp, DREDGE SPOIL	-					0	30				
8-10	4 11 9 9	40	0.0		-					0	30				
10-12	38 14 14 40	30	0.0	Grey, fine SAND and SILT, molst, DREDGE SPOIL	10-					0	30				
12-14	100/3	30	0.0	AUGER REFUSAL AT 12.2 feet						0	40			12.2	2
					15-										
					20-										
			A	TLANTIC		P	a	1e	1	of	1				

BORING LOG 2L MW 7S

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: AREA A LANDFILL DATE STARTED: 08/07/90 DATA COMPLETED: 08/07/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 82.8

PROTECTIVE CASING ELEVATION: 84.50

WELL ELEVATION: 84.37

WATER LEVEL: 74.47 (03/21/91)

DATUM: SUBASE

WEATHER: 75°, LIGHT RAIN

INSPECTOR: ERIK NESS AND FRANCIS DUMONT

CHECKED BY: ERIK NESS

SPLIT SPOON SAMPLI DEPTH (ft)	E	RECOVERY	HNU	SOIL DESCRIPTION color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH (FT.)	C	STAIN	AM.	<u>д</u> *	RAD.	SAMPLE ANALYSIS	LITHOLOGY	ОЕРТН (FT.)	COI	WE NSTF	LL NUCTI	70
, and	ren o		(ppm)								S/						
0-2	5 7 7 10	20	0.0	Brown, coarse SAND and GRAVEL, damp, FILL	0-				0	40		000	0.0			T	
2-4	9 8 8 5	20	0.0	Grey-brown, fine to medium SAND, some gravel, damp, FILL					0	40		0000				GROUT	
4-6	1 2 6 3	10	0.0		5-				0	40		0000					
6-8	6 8 3 3	10	0.0	Grey-brown, fine to medium SAND, some gravel, trace wood fragments, damp, FILL					0	35		000				*	
8-10	5 2 2 2	10	0.0	Grey-brown, fine to medium SAND, some gravel, damp. FILL					0	40		000				NITE	SEAL
10-12	3 5 1 8	25	0.0	Brown, medium to coarse SAND and GRAVEL, trace wood fragments, moist, FILL	10-				0	40	9	0000		-1-		BENTONITE	
12-14	3 2 1 2	90	0.0	Dark grey, medium to coarse SAND, some gravel, moist, FILL	-				0	40		0000					
14-16	3 2 1 2	5	0.0	Dark brown, fine to medium SAND, some silt, wet, FILL	15				0	40). - -	1000		D PVC		- SAND -	
18-18	1 2 1 1	5	0.0	Dark grey, SILT and CLAY, some sand, wet, DREDGE SPOIL	1				0	40	KKK		0,81	0.01 SLOTTED			
18-20	11 12	50	0.0	Dark grey, SILT and CLAY, trace plastic, wet, DREDGE SPOIL	+				0	40	KKK			0			
20-22	WOH WOH 12	80	0.0	Dark grey, SILT and CLAY, trace shell fragments, wet, DREDGE SPOIL	20-				0	40	K						

ATLANTIC

BORING LOG 2L MW 7S

PROJECT: IR STUDY NSB - NLON PROJECT NO: 1258-10 LOCATION: AREA A LANDFILL DATE STARTED: 08/07/90 DATA COMPLETED: 08/07/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 82.8

PROTECTIVE CASING ELEVATION: 84.50

WELL ELEVATION: 84.37

WATER LEVEL: 74.47 (03/21/91)

DATUM: SUBASE

WEATHER: 75°, LIGHT RAIN

INSPECTOR: ERIK NESS AND FRANCIS DUMONT

			T							lea!			Ţ			
		* RECOVERY		SOIL DESCRIPTION	(FT.)	VI	AUIE	ī.		ALYSIS	06Y	(FT.)	COI	WE NSTR	LL UCTIO	N
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6	RECO	(ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STAIN	LEL	RAD.	SAMPLE ANALYSIS	LITHOLOGY	DEPTH				
												!	ပ လ			
20-22	WOH WOH				21					K		1	0.01 SLOTTED PVC ★ →		T	
22-24	1 2 1 1	50	0.0					0	40	k			20.00 10.00			
24-26	WOH WOH	100	0.0					0	40	K					SAND	
28-28	11 12	100	0.0		26-			0	40	K						
28-30	4 5 8 12	100	0.0					0	40	K					*	
30-32	100/3	50	0.0	Light brown, medium to coarse SAND, little silt, wet core to 50.0 feet	31-			0	40			29.8 30.2				
				<i>y</i>											ONITE PELLETS	
					36-										BENTONI	
					-											
					A1-											
					41-										<u> </u>	
		-	AI	LANTIC	р	ลด	e 2	of	3						. –	_

BORING LOG 2L MW 7S

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10
LOCATION: AREA A LANDFILL
DATE STARTED: 08/07/90

DATA COMPLETED: 08/07/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

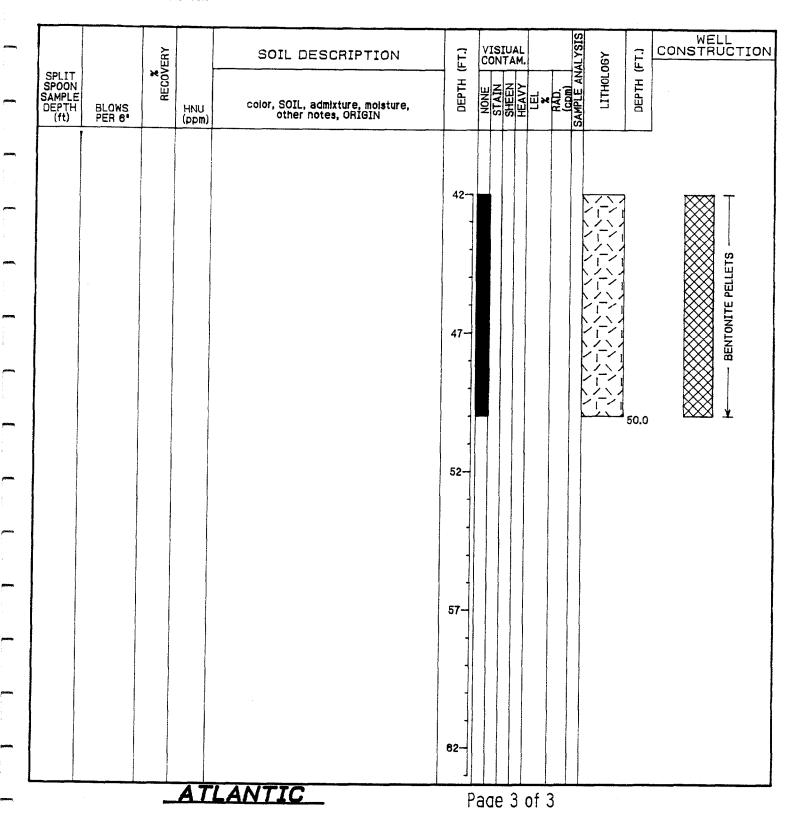
DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 82.8

PROTECTIVE CASING ELEVATION: 84.50


WELL ELEVATION: 84.37

WATER LEVEL: 74.47 (03/21/91)

DATUM: SUBASE

WEATHER: 75', LIGHT RAIN

INSPECTOR: ERIK NESS AND FRANCIS DUMONT

BORING LOG 2L MW 8S

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: AREA A LANDFILL DATE STARTED: 08/02/90 DATA COMPLETED: 08/03/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: SCOTT METCALF

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 88.40

PROTECTIVE CASING ELEVATION: 87.85

WELL ELEVATION: 87.45

WATER LEVEL: 88.74 (03/21/91)

DATUM: SUBASE

WEATHER: 75°, MOSTLY SUNNY INSPECTOR: MICHAEL NEJDL CHECKED BY: ERIK NESS

						T	_			Γ.		(C)	1			W	ELL	
		/ERY		SOIL DESCRIPTION	(FT.)	V	IS ON	IU IT/	AL M.			AI YSI	767	(FT.)	CO	<u>nsï</u>	วับส	TIOI
SPLIT SPOON SAMPLI DEPTH (ft)	I	* RECOVERY	(ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STATN	SHEEN	HEAVY	7 E T	RAD.	SAMPLE ANALYSIS	LITHOLOGY	нт чээо				
0-2	3 2 45 14	30	NA	Brown, fine SAND, some gravel, damp, FILL						0	60		V 0	0.0			NT →	
2-4	21	10	NA		-					0	40		10000 10000				* - * - * GROUT *	7
4-6	7 8 8 4	40	NA	Dark brown, fine to medium SAND, trace brick fragments, trace paper, damp, FILL	5-					0	40		0000		*		* *	BENTONITE SEAL
8-8	3 5 7 7	70	NA	Dark brown, coarse SAND, some gravel, trace paper, oil sheen, wet, FILL						0	40		000					8
8-10	8 5 5 6	85	NA	Dark grey, SILT and CLAY, trace wood, oil stain, wet, FILL						0	30		00000) PVC			
10-12	5 5 8 7	75	NA	Red-brown, fine SAND and SILT, trace gravel, wet	10-					0	30			10.0	0.01 SLOTTED PVC			
12-14	10 20 22 24	65	NA	Brown, fine SAND and SILT, trace gravel, wet						0	40				0		SAND	
14-16	15 18 22 29	40	NA	Brown, SAND and GRAVEL, some slit, wet	15-					0	40	- 1	0.0	14.0	*			
16-18	24 3 8 6 3 80	100	NA	Brown, coarse SAND and SILT, wet						0	50			18.0				
18-20	90 100/2	50	NA	Brown, coarse SAND and GRAVEL, wet	30					0	30	K	00	18.0				
				AUGER REFUSAL AT 20.5 feet	20-									20.0		<u> · · · · ·</u>] 1	

ATLANTIC

BORING LOG 2L MW 9S

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10
LOCATION: AREA A LANDFILL
DATE STARTED: 08/16/90
DATA COMPLETED: 08/17/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 85.3

PROTECTIVE CASING ELEVATION: 88.15

WELL ELEVATION: 86.98 WATER LEVEL: 77.98 (03/21/91)

DATUM: SUBASE

WEATHER: 95°, CLEAR SKIES, VERY HUMID INSPECTOR: MICHAEL NEJDL AND ERIK NESS

ODI TT		* RECOVERY		SOIL DESCRIPTION	(FT.)	VISIU	AL M.			NALYSIS LOGY	(FT.)	CONSTRUCTIO
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6"	RECO	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	STAIN STAIN SHEEN	HEAVY	<u>-</u>	RAD. (cpm)	SAMPLE ANALY LITHOLOGY	ОЕРТН	
0-2	5 7 9 9	85	0.0	Brown, fine to medium SAND and GRAVEL, damp, FILL	0-7			0	40	000	0.0	
2-4	9 7 5 7	40	6.5	Dark brown, fine SAND and GRAVEL, trace clay, damp, FILL				0	50	0000		GROUT
4-6	7 6 5 9	20	3.0	Brown, medium SAND and GRAVEL, moist, FILL	5			0	80	0000		
6- 8	5 4 4 4	35	2.8	Brown, medium to coarse SAND and GRAVEL, trace wood fragments, moist, FILL				0	60	0000		HENTONITE SEAL
8-10	6 9 11 18	35	0.0	Brown, fine to medium SAND and GRAVEL, trace paper, trace glass, wet, FILL				0	80	0000		T 1 NBB
10-12	6 7 1 1	30	0.0	WOOD	10-			ס	60	2000		
12-14	11	75	0.0	Dark grey, coarse SAND and SILT, some clay, trace wood fragments, wet, DREDGE SPOIL				0	60		12.0	0.01 SLOTTED PVC
4-18	11 12	100	0.0	Grey, SILT and CLAY, trace fine sand, trace shell fragments, trace wood fragments, wet, DREDGE SPOIL	15-			0	50			- ; ;
6-18	2 1 1 2	100	NA				t	NΑ	NA			
3- 20	2 1 2 2	90	0.0					0	50			¥
0-22	мон мон мон мон	100	0.0		20-			0	45			

BORING LOG 2L MW 9S

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: AREA A LANDFILL DATE STARTED: 08/16/90 DATA COMPLETED: 08/17/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 85.3

PROTECTIVE CASING ELEVATION: 88.15

WELL ELEVATION: 88.98 WATER LEVEL: 77.98 (03/21/91)

DATUM: SUBASE

WEATHER: 95°, CLEAR SKIES, VERY HUMID INSPECTOR: MICHAEL NEJDL AND ERIK NESS

CHECKED BY: ERIK NESS

	T					,				, . ,		,	
		ERY		SOIL DESCRIPTION	(FT.)	VISIL	JAL AM.		_	ANALYSIS	ЭбҮ	(FT.)	CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH BLOWS (ft) PER 6	BLOWS PER 6	RECOVERY	(ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	рертн	STAIN	HEAVY	ቯ*	RAD.	SAMPLE AN	LITHOLOGY	рертн (
20-22	WOH WOH				21-					K			
22-24	WOH WOH 12	100	0.0					0	70				
24-28	1 2 1 2	100	0.0		4			0	45				
26-28	NΑ	100	0.0		28-			0	40				
28-30	NA	100	0.0	Brown, medium SAND, trace gravel, wet Brown, medium SAND and GRAVEL, wet				0	30	þ	00.	27.85 28.0	
30-32	NA	60	0.0	Brown, fine SAND, some gravel, wet	31-			0	50		0.0.	30.0	SAND
32-34	NA	80	0.0	Brown, SILT, some gravel, wet				0	30			32.0	φ,
34-36	NA	85	0.0		4			0	45				
36-38	13 6 5 6	85	0.0	Grey-brown, SILT and CLAY, trace fine sand, trace gravel, trace wood, wet	38-			0	30	•	++1	36.0	
38-40	4 18 12 14	20	0.0	Brown, fine SAND and GRAVEL, wet				0	30	0	000	3 8. 0	
40-42	8 9 4 5	45	0.0		41-			0	35	0	000		

ATLANTIC

Page 2 of 3

BORING LOG 2L MW 9S

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: AREA A LANDFILL DATE STARTED: 08/18/90 DATA COMPLETED: 08/17/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 85.3

PROTECTIVE CASING ELEVATION: 88.15

WELL ELEVATION: 86.96

WATER LEVEL: 77.98 (03/21/91)

DATUM: SUBASE

WEATHER: 95°, CLEAR SKIES, VERY HUMID INSPECTOR: MICHAEL NEJDL AND ERIK NESS

SPLIT		* RECOVERY		SOIL DESCRIPTION	t (FT.)	V.C	ISI ON	SHEEN WAT				ANAL YSIS	LITHOLOGY	+ (FT.)	WELL CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6*	REC	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	ОЕРТН	NONE	STAIN	SHEEN	回	× E	(CDM)	SAMPLE	ГТН	рертн	
42-44	100/3	10	0.0	AUGER REFUSAL AT 42.5 feet	42-				0	ε	30	, P	00	42.5	SAND TY TY
					47-										
					-										
					52-										
					57-										
					82-										
		-	AI	LANTIC	{	зa	D	e 3	01	3	}				

BORING LOG 2L MW 13S

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: AREA A LANDFILL DATE STARTED: 08/22/90 DATA COMPLETED: 08/22/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 88.9

PROTECTIVE CASING ELEVATION: 88.80

WELL ELEVATION: 88.53 WATER LEVEL: 75.09 (03/21/91)

DATUM: SUBASE

WEATHER: 85°, CLEAR SKIES, LIGHT WIND INSPECTOR: MICHAEL NEJDL AND ERIK NESS

		ERY		SOIL DESCRIPTION	(FT.)	VISIU	JAL AM.			AL YSIS	(FT.)	CON	WEL	L JCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6°	RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	ОЕРТН (STAIN	HEAVY	ਜੁ×	RAD. (com)	SAMPLE ANALYSIS LITHOLOGY	ОЕРТН (
				Provin modium to coarse SANO and	0-7					V. O.] 0.0	_		•
0-2	5 8 7 9	35	0.4	Brown, medium to coarse SAND and GRAVEL, damp, FILL				o	40	000				GROUT ★
2-4	22 24 22 26	100	0.0	Dark brown, SILT, some gravel, red staining, grading to moist at 8.0 feet, FILL				0	35	0000				*
4-6	24 21 17 18	100	0.0		5			0	50	000				BENTONITE—SEAL
6-8	12 11 9 8	100	0.0					0	60	000		T		BEN
8-10	10 11 25 2 8	100	NA	Grading to red, medium SAND and GRAVEL, trace silt, trace plastic, wet, FILL	4			NA	NA	0000				
10-12	8 7 6 4	15	0.0	Grey-brown, SILT, trace gravel, wet, FILL	10-			o	30	0000		O.OI SLOTTED PVC		SAND
12-14	8 9 10 12	10	0.0	Brown, fine SAND and SILT, trace black ash, wet, FILL				0	30	0000		— 0.01 SL		Š
14-16	3 8 27 100/1	60	0.0	Brown, SILT, some gravel, some ash, wet, FILL	15-			0	40	0000	1			
				AUGER REFUSAL AT 18.0 feet CORE from 16.0 - 36.0 feet							16.0	*	日	
					20-									LONITE PELLETS
			A7	LANTIC		Page	1 /	of :					<u> </u>	BENTONIT

BORING LOG 2L MW 13S

PROJECT: IR STUDY NSB - NLON PROJECT NO: 1258-10 LOCATION: AREA A LANDFILL DATE STARTED: 08/22/90 DATA COMPLETED: 08/22/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 88.9

PROTECTIVE CASING ELEVATION: 88.80

WELL ELEVATION: 88.53 WATER LEVEL: 75.09 (03/21/91)

DATUM: SUBASE

WEATHER: 65°, CLEAR SKIES, LIGHT WIND INSPECTOR: MICHAEL NEJDL AND ERIK NESS

								,				
CD1 77		* RECOVERY		SOIL DESCRIPTION	(FT.)	VISI	UAL TAM.			ALYSIS 06Y	(FT.)	CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6*	RECO	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	SHEEN	JAL RAM. HEAVY		SAMPLE ANALY LITHOLOGY	ОЕРТН	
					21					ハンハン		
					28-					ハーハーハーハーハーハーハー		BENTONITE PELLETS
					31-							BENTONITI
					36-					トノー・ノー・ノー・ノー・ノー・ノー・ノー・ノー・ノー・ノー・ノー・ノー・ノー・ノ	36.0	
			AT	LANTIC_	41-	age	2 0	of 2			100 M	

BORING LOG 2L MW 14S

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10

LOCATION: AREA A DOWNSTREAM DATE STARTED: 07/31/90 DATA COMPLETED: 07/31/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: SCOTT METCALF

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 91.9
PROTECTIVE CASING ELEVATION: WELL ELEVATION: WATER LEVEL: DATUM: SUBASE

WEATHER: 85', CLEAR SKIES INSPECTOR: MIKE NEJDL CHECKED BY: CURT KRAEMER

							101	P1 1 A	,			SIS			WELL
SPLIT		* RECOVERY		SOIL DESCRIPTION	(FT.)	\vdash		TA	-			ANALYSIS	.06Y	(FT.)	CONSTRUCTION
SPOON SAMPLE DEPTH (ft)	BLOWS PER 6	RECC	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STAIN	SHEEN	HEAVY	<u></u>	RAD.	SAMPLEA	LITHOLOGY	DEPTH	
				Brown, fine to coarse SAND, trace	0-7						- I - I - I - I - I - I - I - I - I - I		VI: -a.	0.0	
0-2	9 16 26 26	70	0.0	slit, some gravel, damp, FILL						0	40		000		
2-4	15 8 4 8	7	0.0							0	40		0000		
4-6	9 6 4 7	10	0.0	Brown, fine to coarse SAND and GRAVEL, trace silt, damp	5-					0	80		000	4.0	
6-8	6 5 4 3	100	0.0	Brown, fine SAND and SILT, trace wood fragments, damp						0	70			6.0	
8-10	5 8 12 14	85	0.0	Brown, fine to medium SAND, little gravel, trace slit, damp	-					0	60		00	8.0	
10-12	11 40 50/5	60	0.0		10-					0	50		0 0 0 0 0 0 0 0		
12-14	17 100	40	0.0	Brown fine to coarse SAND, little gravel, trace slit, moist AUGER REFUSAL AT 13.0 feet, NO WELL INSTALLED, only indication of moisture was in bottom six inches of boring.						0	65			12.0 13.0	
					15-										
			V												·
					20-										
			AT	LANTIC	Р	ac	ie	1	0.	f 1					

BORING LOG 2L MW 17S

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: AREA A LANDFILL

DATE STARTED: 08/15/90 DATA COMPLETED: 08/15/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 82.48

PROTECTIVE CASING ELEVATION: 82.48

WELL ELEVATION: 82.12

WATER LEVEL: 78.23 (03/21/91)

DATUM: SUBASE

WEATHER: 80', MOSTLY SUNNY, HUMID

INSPECTOR: MICHAEL NEJDL CHECKED BY: ERIK NESS

SPLIT SPOON		RECOVERY		SOIL DESCRIPTION	Н (FT.)	C	ISIU	AM.		Ī	ANALYSIS	LITHOLOGY	Н (FT.)	CONSTRUCTIO
SAMPLE DEPTH (ft)	BLOWS PER 6	AB BB	UNH (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STAIN	HEAV	Щ×	RAD.	SAMPLE	ii ii	ОЕРТН	
0-2	15 17	65	0.1	Brown, fine SAND and GRAVEL, damp, FILL	0-7								0.0	
2-4	12 40 50 12 7 8	40	0.1		-				0	50		00000		**************************************
4-6	25 16 9 10	35	0.0	Brown, fine to medium SAND and GRAVEL, damp, FILL	5-				0	50	7	00000		*
6-8	21 67 14 4	40	0.1	Grey-brown, fine to medium SAND and GRAVEL, moist, FILL					0	80		0000		ENTONITE
8-10	7 54 3 8 20	30	1.0	Brown, medium SAND and GRAVEL, trace brick fragments, moist, FILL	-				0	60	J. 1. 1.	0000		T
10-12	1 3 11 7 9	5	1.4	Brown, medium SAND and GRAVEL, some slit, trace paper, wet, FILL	10-				0	55		0000		
12-14	8 7 1 1	75	0.0	Grey-brown, SILT and CLAY, wet, DREDGE SPOIL					0	60			12.0	- 0.01 SLOTTED PVC -
14-16	NA	75	0.0	Dark brown, SILT and CLAY, wet, DREDGE SPOIL	15-				0	40				0.01
16-18	2 1 2 1	95	0.0	Dark brown, fine SAND and SILT, trace stems and plant matter, DREDGE SPOIL				And the state of t	0	30		\bigotimes		<u> </u>
8-20	100/6	100	0.0	Plece of weathered bedrock in end of catcher. AUGER REFUSAL AT 18.5 feet	20-				0	50	K	KX	18.5	<u>:::</u>] ↓
		·	AT	LANTIC					f 1					

BORING LOG 2L MW 18S

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: AREA A LANDFILL DATE STARTED: 08/03/90 DATA COMPLETED: 08/07/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: SCOTT METCALF

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 77.94
PROTECTIVE CASING ELEVATION: 77.94
WELL ELEVATION: 77.80
WATER LEVEL: 71.55 (03/21/91)

DATUM: SUBASE

WEATHER: 75°, OVERCAST INSPECTOR: MICHAEL NEJDL CHECKED BY: ERIK NESS

SPLIT SPOON SAMPLE DEPTH	BLOWS	RECOVERY	HNU	SOIL DESCRIPTION color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH (FT.)	C	NC.	NAT MAT	, LEL	RAD.	SAMPLE ANALYSIS	LITHOLOGY	ОЕРТН (FT.)	CON	WE ISTR	LL IUCTIO	7
(ft)	PER 6°		(ppm)								S						
0-2	22 30 29 19	50	6.1	Brown, medium SAND and GRAVEL, damp, FILL	0-				0	120		D 00 0	0.0			¥-GROUT≯	
2-4	22 45 2 6 12	35	0.8	Grey, medium SAND, some ash, trace wood fragments, damp, FILL					0	120						<u> </u>	
4-8	8 7 5 5	30	3.2	Brown, medium SAND and GRAVEL, trace leaves, damp, FILL	5-				0	120		000				BENTONITE	
6-8	4 2 11 14	10	0.5	Brown, medium to coarse SAND and GRAVEL, moist, FILL					0	140		000		T			
8-10	14 23 11 8	30	0.6	Brown, medium SAND and GRAVEL, trace paper, trace wood fragments, wet, FILL					0	150		000		PVC			
10-12	7 14 10 8	25	0.1	Brown, medium SAND and GRAVEL, trace wood fragments, wet, FILL	10-				0	40		000		O.OI SLOTTED PVC			
12-14	NA	30	0.1	Brown, coarse SAND and GRAVEL, wet, FILL					0	35		0000		0.0		SAND	
14-16	6 2 3 3	0	NA	NO RECOVERY	15-				NA	NA		11	14.0				
16-18	3 2 2 2	15	0.1	Brown, fine SAND, trace gravel, wet, FILL					0	30		700	16.0				
18-20	3 3 2 3	75	0.0	Brown, SILT and CLAY, trace wood fragments, wet, DREDGE SPOIL					0	40			18.0				
20-22	2 1 3 1	75	0.4	Dark brown, SILT and CLAY, trace shell fragments, wet, DREDGE SPOIL	20-				0	30							

BORING LOG 2L MW 18S

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10
LOCATION: AREA A LANDFILL
DATE STARTED: 08/03/90

DATA COMPLETED: 08/07/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: SCOTT METCALF

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 77.94

PROTECTIVE CASING ELEVATION: 77.94

WELL ELEVATION: 77.60 WATER LEVEL: 71.55 (03/21/91)

DATUM: SUBASE

WEATHER: 75°, OVERCAST INSPECTOR: MICHAEL NEJDL CHECKED BY: ERIK NESS

SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6°	RECOVERY	HNU (ppm)	SOIL DESCRIPTION color, SOIL, admixture, moisture, other notes, ORIGIN	ОЕРТН (FT.)	NON S	STAIN	SHEEN MAN	LEL	> 2	RAD. (com)	SAMPLE ANALYSIS	LITHOLOGY	DEPTH (FT.)	WELL CONSTRUCTION
20-22	21 31 21 21	0	NA	NO RECOVERY	21-				N	A	NA			22.0	
24-26	2 1 1 2	100	0.4	Dark brown, SILT and CLAY, trace shell fragments, wet, DREDGE SPOIL	28-				()	37.5			24.0	
26-28	2332	100	0.1						()	37.5				SAND
28-30 30-32	3 4 4 4 5 12	100 75	0.1	Dark brown, fine SAND and SILT, trace root structures, wet, TOP SOIL Brown, fine SAND and GRAVEL,	31						40 40			29.5 30.0	
32-34	100/3	80	0.0	Brown, medium to coarse SAND and GRAVEL, wet AUGER REFUSAL AT 33.5 feet	-						40				
					36-										
			A7	LANTIC	41-	 - -	04	e 2	0	f	2				

BORING LOG 2D MW 10S

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10

LOCATION: AREA A DOWNSTREAM DATE STARTED: 09/20/90 DATA COMPLETED: 09/20/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JOE RAAB

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 52.8

PROTECTIVE CASING ELEVATION: -

WELL ELEVATION: -

WATER LEVEL: -

DATUM: SUBASE

WEATHER: 85', CLEAR SKIES, LIGHT WIND

INSPECTOR: MICHAEL NEJDL

CHECKED BY: ERIK NESS

SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6*	RECOVERY	HNU (ppm)	SOIL DESCRIPTION color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH (FT.)	>C NON	STAIN	SHEEN WAT	LEL	RAD.	SAMPLE ANALYSTS	LITHOLOGY	DEPTH (FT.)	WELL
2-4	10 15 17 29 3 7 17 64 13 4 3 4	75 25 100	0.3	Brown, fine to coarse SAND, some silt, damp Red-brown, fine SAND and SILT, wet at 5.0 feet AUGER REFUSAL AT 5.0 feet NO WELL INSTALLED	5-				0 0	40			3.0	
			AT	LANTIC	20-	a (10	1.0	ıf 1				W	

BORING LOG 2D MW 11S

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10

LOCATION: AREA A DOWNSTREAM DATE STARTED: 08/28/90

DATA COMPLETED: 08/28/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 45.4

PROTECTIVE CASING ELEVATION: 47.77

WELL ELEVATION: 48.85

WATER LEVEL: 44.75 (03/21/91)

DATUM: SUBASE

WEATHER: 75°, CLEAR SKIES INSPECTOR: ERIK NESS CHECKED BY: ERIK NESS

SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6'	* RECOVERY	HNU (ppm)	SOIL DESCRIPTION color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH (FT.)	STAIN STAIN SHEEN	м.	RAD. (cpm)	SAMPLE ANALYSIS LITHOLOGY	DEPTH (FT.)	WELL
0-2	11	75	0.0	Dark brown, fine SAND and SILT, trace roots, moist, TOP SOIL Light brown, fine SAND and SILT, rust colored mottling, trace roots, wet at 3.0 feet	0-		0	30		0.0	
2-4	1 2 4 5	100	0.0				0	40			
4-6	8 11 13 18	100	0.2		5-		0	60			BENTONITE
8-8	12 13 13 14	100	0.2	Grey, fine to medium SAND, some silt, rust colored mottling, wet			0	40	0 0 0	6.0	0.01 SLOTTED PVC
8-10	8 10 12 12	100	0.2				0	40	00.		0.01 St.
10-12	8 7 10 11	80	NA	Grey-brown, fine SAND and SILT, rust colored mottling, wet	10-		NA	40	00	10.0	
12-14	5 9 1 8 18	100	0.0	Grey-brown, fine SAND and SILT, wet	-		0	60			↓ [1]
14-16	4 8 10 18	100	0.0		15-		0	60			
16-18	35 41 100/4	75	0.0	Light brown, medium to coarse SAND, trace silt, wet AUGER REFUSAL AT 17.5 feet			0	40		16.0 17.5	<u> </u>
			AT	LANTIC	20-	age 1	0 4 1			·	

BORING LOG 2D MW 15S

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10

LOCATION: AREA A DOWNSTREAM DATE STARTED: 09/19/90 DATA COMPLETED: 09/19/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JOE RAAB

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 42.2

PROTECTIVE CASING ELEVATION: - WELL ELEVATION: -

WATER LEVEL: -

WEATHER: 65°, OVERCAST INSPECTOR: ERIK NESS CHECKED BY: ERIK NESS

WELL ANALYSI VISIUAL CONSTRUCTION * RECOVERY (FT.) (FT.) SOIL DESCRIPTION LITHOLOGY CONTAM. SPLIT SPOON DEPTH DEPTH NONE STAIN SHEEN HEAVY LEL RAD. SAMPLE SAMPLE DEPTH color, SOIL, admixture, moisture, other notes, ORIGIN **BLOWS** HNU (ppm) (ft) PER 6 0 Dark brown, fine SAND and SILT, trace roots, damp, TOP SOIL 0.0 0 0 0.25 87 0-2 50 0.3 0 50 Brown, fine to medium SAND, some 1.0 9 12 gravel, damp Red brown, fine SAND and SILT, moist 48 2-4 100 0.3 0 60 10 11 Grading to grey-brown color 4-6 10 100/5 50 0.3 5--0 50 AUGER REFUSAL AT 5.0 feet, NO WELL INSTALLED 10-15-20

BORING LOG 2D MW 16S

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10

LOCATION: AREA A DOWNSTREAM DATE STARTED: 09/18/90 DATA COMPLETED: 09/19/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JOE RAAB

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 35.8

PROTECTIVE CASING ELEVATION: 38.08

WELL ELEVATION: 37.85

WATER LEVEL: 34.30 (03/21/91)

DATUM: SUBASE

WEATHER: 80°, CLEAR SKIES, VERY WINDY

INSPECTOR: LYNN METCALF AND ERIK NESS

CHECKED BY: ERIK NESS

SPLIT		RECOVERY		SOIL DESCRIPTION	н (FT.)	C	NC	IU. TA	M.			SAMPLE ANALYSIS	LITHOLOGY	Н (FT.)	WELL CONSTRUCTION
SPOON SAMPLE DEPTH (ft)	BLOWS PER 6*	REC	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	ОЕРТН	NON	STAIN	SHEE	HEAV	ਜੁ*	RAD.	SAMPLE	Ė	DEPTH	
0-2	5 7 10 11	50	0.2	Dark brown, fine SAND and SILT, trace roots, moist, TOP SOIL Brown, medium to coarse SAND and GRAVEL, trace silt, moist	0-7					0	40		0.00	0.0 0.5	
2-4	8 9 10 11	30	0.4							0	50		000		
4-6	100/5	5	0.2		5-					0	50		0.00		DVG
8-8	26 30 13 7	50	0.2	Grey, fine to very fine SAND and SILT, wet						1	50			6.0	O.OI SLOTTED PVC
8-10	8 20 31 45	60	0.2	Brown, fine to medium SAND and GRAVEL, trace slit, wet	10-					1	40		0000	8.0	0.0 1.11 0.0
10-12	42 10 0 /5	100	0.2							1	50		0.00		
12-14	100/5	100	0.2	AUGER REFUSAL AT 13.5 feet						t	40			13.5	
	,				15-										
			And the summer of the summer o		20-										

ATLANTIC

OVER BANK DISPOSAL AREA (OBDA)

BORING LOG 3 MW 12S

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10

LOCATION: AREA A DOWNSTREAM DATE STARTED: 08/28/90 DATA COMPLETED: 08/29/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JON YEATON

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 41.0

PROTECTIVE CASING ELEVATION: 43.95

WELL ELEVATION: 43.51

WATER LEVEL: 40.84 (03/21/91)

DATUM: SUBASE

WEATHER: 75°, CLEAR SKIES INSPECTOR: LYNN METCALF CHECKED BY: ERIK NESS

SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 8°	RECOVERY	HNU (ppm)	SOIL DESCRIPTION color, SOIL, admixture, moisture, other notes, ORIGIN	ОЕРТН (FT.)	NONE STAIN STAIN	LEL	RAD. (cpm)	SAMPLE ANALTSIS	LITHOLOGY	DEPTH (FT.)	CON	WE	LL UCTI	.00
0-2	11 22 36 100/3	30	0.0	Grey, SILT AND CLAY, light brown-yellow mottling, moist Grey, fine SAND and SILT, light brown-yellow mottling, boulder at 2.75 feet, damp Auger refusal at 3.0 feet, drilled with air rotary to 10.0 feet, some sand and boulders	5-		0	40	1.		2.0 2.75			7 1	
10-12	3 5 7 18 20 79	50	0.0	Light brown, fine SAND, 1.0 mm biotite lenses throughout, some iron staining from 11.5 to 12.0 feet Light brown, fine to medium SAND and GRAVEL, wet AUGER REFUSAL AT 13.0 feet	10-		0	40	5.0	900	10.0 12.0 13.0	<		SAND	
				AUGER REPUSAL AT 13.0 Teet	15-										

ATLANTIC

DEFENSE REUTILIZATION AND MARKETING OFFICE (DRMO)

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: DRMO DATE STARTED: 10/11/90

DATA COMPLETED: 10/11/90
DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JOE RABB

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 7.80
PROTECTIVE CASING ELEVATION: WELL ELEVATION: WATER LEVEL: DATUM: SUBASE
WEATHER: 75', PARTLY CLOUDY
INSPECTOR: LYNN METCALF
CHECKED BY: ERIK NESS

		Т		<u> </u>		T					တ			WELL
		/ERY		SOIL DESCRIPTION	(FT.)	VI CO	SIL	JAL AM.		,	ALYSI	.06Y	(FT.)	CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6'	* RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	ОЕРТН	NONE	STAIN	HEAVY	핔*	RAD.	SAMPLE ANALYSIS	LITHOLOGY	ОЕРТН	
				Brown, fine SAND and GRAVEL, damp	- 0-							·. · · · · ·	o. o	
0-2	17 12 12 12	30	0		-				0	20		000		
2-4	12 16 13 21	10	0	Grey-brown, fine to medium SAND and GRAVEL, damp					0	30				
4-6	10 11 14 17	25	0	Brown, medium to coarse SAND and GRAVEL, wet	5-				0	40				
6-8	7 8 1 1	0	NA	NO RECOVERY					NA	NA			6.0	
8-10	5 4 3 3	100	0	Grey, fine to medium SAND and SILT, trace wood fragments, trace shell fragments, wet					0	40			8.0	
10-12	4 4 5 2	30	0		10-				0	35				
12-14	4 4 5 3	75	0						0	40				
14-16	5 5 4 4	75	0		15-				0	40				
16-18	7 7 8 10	25	o	Dark grey, medium to coarse SAND and GRAVEL, trace slit					0	40		0.00	18.0	
18-20	8 10 13 21	75	0	Grading to orange-brown					0	40	1 1		i	
				END OF BORING AT 20.0 feet	20-							<u>v</u>	20.0	ı

ATLANTIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: DRMO

DATE STARTED: 10/04/90 DATA COMPLETED: 10/04/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JOE RABB

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 7.0 PROTECTIVE CASING ELEVATION: -

WELL ELEVATION: -WATER LEVEL: -DATUM: SUBASE

WEATHER: 65°, CLOUDY, WINDY

INSPECTOR: ERIK NESS CHECKED BY: ERIK NESS

		ВY		SOIL DESCRIPTION	(FT.)	VI	SI	UAL AM.			YSTS	ξ. (6γ	(FT.)	WELL CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6°	RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH (NONE	STAIN	SHEEN	릐	RAN	(CDM) SAMPI F ANAI YSTS	LITHOLOGY	DEPTH (
				Brown, fine to coarse, SAND and	0-7					70.00		J	0.0	
0-2	30 38 40 12	90	0.8	Brown, fine to coarse, SAND and GRAVEL, little silt, damp Wet at 4.0 feet					1	5	50		[
2-4	25 31 22 17	80	0.8		-				1	5	50			
4-6	18 17 21 17	75	0.8	Grey, fine to medium SAND, trace gravel, wet	5-				1	5	50	0 0 0	4.3	
6-8	12 8 4 3	50	1.0		1				1	6	30	0 0 0 0 0 0 0 0		
8-10	11 21	75	0.8	Black, SILT and CLAY, trace fine sand, trace wood fragments, trace shell fragments, wet	10-				1	ε	30		8.5	
10-12	3 3 11	20	0.3		-				1	5	50			
12-14	4 3 2 1	80	0.3						1	5	50			
14-16	2 4 2 1	90	1.0		15-				1	ε	30			
16-18	11	50	0.8						1	1	30			•
18-20	1 1 1 10	100	0.6						1	Ę	50			
				END OF BORING AT 20.0 feet	20-				of				20.0)

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: DRMO

DATE STARTED: 10/04/90
DATA COMPLETED: 10/05/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JOE RABB

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 8.50

PROTECTIVE CASING ELEVATION: -

WELL ELEVATION: -

WATER LEVEL: - DATUM: SUBASE

WEATHER: 65°, CLOUDY, WINDY

INSPECTOR: ERIK NESS AND ANNA SULLIVAN

CHECKED BY: ERIK NESS

		ВY		SOIL DESCRIPTION	(FT.)	VI	ISI TNC	UAI AM	1.			ANALYSIS	Б.	(FT.)	WELL CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6*	# RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH (I	NONE	STAIN	SHEEN	HEAV1	ਜੂ≫	RAD. (CDM)	SAMPLE ANA	LITHOLOGY	DEPTH (
0-2	10 12 14 13	75	170	Brown, fine to coarse SAND and GRAVEL, some silt, damp	0-					1	40		000	0.0	
2-4	12 16 21 20	05	3	Dark brown, medium to coarse SAND and GRAVEL, damp						1	50				
4-6	7 9 11 10	5	3	Dark brown, medium to coarse SAND and GRAVEL, large rock fragments, wood, wet	5-					1	50				
6-8	10 8 4 1	40	180	Brown, fine to coarse SAND, some gravel, some wood fragments, wet	1 1					1	40			6.0	
8-10	3 2 11	0	NA	NO RECOVERY						NA	NA		•	8.0	
10-12	2 2 11	0	NA		10-					NA	NA				
12-14	11 11	0	NA		4					NA	NA				
14-16	1 1 2 17	20	50	Brown, fine to coarse SAND, some gravel, some wood fragments, wet	15-					1	50			14.0	
16-18	11 23	1	50	Grey, SILT and CLAY, trace fine sand, trace shell fragments, trace wood fragments, wet						1	50			16.0	
18-20	8 4 3 1	100	30							1	30				
				END OF BORING AT 20.0 feet	20-									20.0	

ATLANTIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: DRMO

DATE STARTED: 10/04/90 DATA COMPLETED: 10/04/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JOE RABB

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 5.80

PROTECTIVE CASING ELEVATION: -

WELL ELEVATION: -WATER LEVEL: -DATUM: SUBASE

WEATHER: 65', CLOUDY

INSPECTOR: ERIK NESS AND ANNA SULLIVAN

CHECKED BY: ERIK NESS

		ERY		SOIL DESCRIPTION	(FT.)	V:	ISI DN1	UAL TAM.				AL YSIS	эбү	(FT.)	WELL CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6"	* RECOVERY	(ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	рертн (NONE	STAIN	SHEEN	旧	*	RAD. (cpm)	SAMPLE AN	LITHOLOGY	ОЕРТН	
0-2	20 40 45 50	80	0.2	0.0 - 0.1 ASPHALT Brown, fine to coarse SAND and GRAVEL, some silt, some charred wood pieces FILL	0-7						50		VOOD	0.0 0.1	
2-4	20 45 7 4	20	25	Brown, fine to coarse SAND and GRAVEL, some silt, wet at 4.0 feet					1		50		DON	2.0	
4-6	9 10 6 3	0	NA	NO RECOVERY	5-						NA		. ٠٨	4.0	
6-8	3 3 3 3	75	75	Grey, SILT and CLAY, trace fine sand, trace shell fragments, oil sheen, wet							50			6.0	
8-10	1 1 1 2	0	NA	NO RECOVERY							NA			8.0	
10-12	2 2	50	4	Grey, SILT and CLAY, trace fine sand, trace shell fragments, oil sheen, wet	10-				1		50			10.0	
12-14	11	90	4							1	60				
14-16	2 1 1 2	100	4		15-						40				
18-18	21	50	5						1		60				
18-20	1 1 1 1	100	1								60				
				END OF BORING AT 20.0 feet	20-] 						20.0)

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: DRMO DATE STARTED: 10/03/90

DATA COMPLETED: 10/04/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JOE RABB

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 8.7 PROTECTIVE CASING ELEVATION: -WELL ELEVATION: -

WATER LEVEL: -DATUM: SUBASE

WEATHER: 75°, CLEAR SKIES

INSPECTOR: ERIK NESS AND ANNA SULLIVAN

CHECKED BY: ERIK NESS

SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6'	* RECOVERY	HNU (ppm)	SOIL DESCRIPTION color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH (FT.)	CC	STAIN	AM.	LE WE	RAD. (cpm)	SAMPLE ANALYSIS	LITHOLOGY	ОЕРТН (FT.)	WELL CONSTRUCTION
0-2	30 21 17 21	100	0.2	Brown, fine to coarse SAND and GRAVEL, trace silt, damp, FILL Black, coarse SAND and GRAVEL, trace silt, damp, FILL	0-				0	40		0000	0.0	
2-4 4-6 6-8	20 17 15 18 17 12 5 3	25	0.2	Brown, fine to coarse SAND and GRAVEL, trace silt, trace metal objects, wire, nails, etc., wet Brown, fine to coarse SAND and GRAVEL, some wood fragments, trace silt, wet	5-				0	40		0000000	6.0	
8-10	6 20 65 8 12 6 6 8	80	0.4	trace slit, wet	10-				1	50				
12-14	8 7 7 4	100	0.4		1				1	40				
14-16	6 10 8 6 10 100/5	30 50	0.2	END OF BORING AT 17.0 feet	15				1	40 50		000	16.0 17.0	
			AT	LANTIC	20-		00	4	of 1				-	

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: DRMO

DATE STARTED: 09/27/90 DATA COMPLETED: 09/27/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

ATLANTIC

DRILLER: JOE RABB

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 4.9
PROTECTIVE CASING ELEVATION: WELL ELEVATION: -

WATER LEVEL: -DATUM: SUBASE

WEATHER: 75°, CLEAR SKIES INSPECTOR: ERIK NESS

CHECKED BY: ERIK NESS

SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6°	# RECOVERY	HNU (ppm)	SOIL DESCRIPTION color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH (FT.)	C	'אס	SHEEN	reir Ferri	RAD.	SAMPLE ANALYSIS	LITHOLOGY	ОЕРТН (FT.)	WELL CONSTRUCTION
0-2 2-4 4-8	25 20 17 9 30 31 19 25 8 3 5 4	100	0.2	Brown, fine to medium SAND and GRAVEL, trace silt, clay pipe, cement fragments, trace wood chips, damp, FILL Brown, fine to medium SAND and SILT, wet	5-				1 1	40		10000000000000000000000000000000000000	6.0	
8-10	6 4 2 2 3 3 2 2	25	0.2	SILT, wet END OF BORING AT 10.0 feet	10				4.	40			10.0	·
					15-									

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: DRMO

DATE STARTED: 09/26/90 DATA COMPLETED: 09/28/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

ATLANTIC

DRILLER: JOE RABB

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 5.9 PROTECTIVE CASING ELEVATION: -WELL ELEVATION: -WATER LEVEL: -DATUM: SUBASE

WEATHER: 85', OVERCAST INSPECTOR: ERIK NESS CHECKED BY: ERIK NESS

SPLIT SPOON SAMPLE DEPTH	BLOWS	* RECOVERY	HNU	SOIL DESCRIPTION color, SOIL, admixture, moisture, other notes, ORIGIN	рертн (FT.)	NON SIC	STAIN	SHEEN	HEAVY ST	ш ж	RAD. (com)	MPLE ANALYSIS	LITHOLOGY	ОЕРТН (FT.)	WELL CONSTRUCTION
DEPTH (ft)	PER 6*		(mqq)		0-7							/S		0.0	
0-2	24 39 68 29	80	0.2	Brown, fine to medium SAND and GRAVEL, trace metal fragments, large pieces of red brick, damp, FILL	-					1	40		0000		
2-4	21 30 25 27	40	0.2							1	40		0000		
4-8	4 7 100/5	100	0.2		5					1	80		0000		
8-10	17 6	5 50	0.2	Grey-brown, fine SAND and SILT, some clay, trace shell fragments, oil sheen, wet	1					1	30			7.8	
	83			END OF BORING AT 10.0 feet	10-									10.0)
					_										
					15										
					20-										

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: DRMO DATE STARTED: 10/11/90 DATA COMPLETED: 10/11/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JOE RAAB

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 7.0 PROTECTIVE CASING ELEVATION: 9.21 WELL ELEVATION: 8.83 WATER LEVEL: 1.28 (03/21/91)

DATUM: SUBASE

WEATHER: 85°, PARTLY CLOUDY INSPECTOR: LYNN METCALF CHECKED BY: ERIK NESS

		ERY		SOIL DESCRIPTION	(FT.)	V C	IS ON	LUAI TAM	L.			ANALYSIS)GY	(FT.)	CO	W NST	ELL	TION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6°	* RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH (NONE	STAIN	SHEEN	TEAV	<u>п</u> ж	RAD.	SAMPLE AN	LITHOLOGY	ОЕРТН (
				Brown, fine to medium SAND and	0								o o	0.0			T .	-
0-2	13 39	90	0	GRAVEL, trace silt, damp	4					1	50		0000			XXX	X I load X 1	ITE
2-4	24 ff 11 8	50	12							1	50					$ \cdot $		BENTÔNITE SEAL
4-6	7 9 11 17	25	0	Brown-black, fine to medium SAND	5-					1	50							
6-8	12 13 9 11	10	0	and GRAVEL, trace silt, iron staining, black staining, diesel odor, wet at 6.0						1	50		0.00)\c			
8-10	4 5 5 6	25	0	Brown, fine SAND, some gravel, trace silt, wet						1	50			8.0	0.01 SLOTTED PVC		SAND	!
10-12	7 6 6 8	25	0		10-					1	50				0.01			
12-14	21 19 33 18	0	0							1	50							
14-16	100/2			END OF BORING AT 14.2 feet	15-									14.2		· ***	⊥ ⊻	•
				LANTIC	20-			e 1										

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: DRMO

DATE STARTED: 10/09/90 DATA COMPLETED: 10/09/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JOE RAAB

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 5.4

PROTECTIVE CASING ELEVATION: 8.01

WELL ELEVATION: 7.3 WATER LEVEL: 1.12 (03/21/91)

DATUM: SUBASE

WEATHER: 85°, CLOUDY, OCCASIONAL SHOWERS

INSPECTOR: ERIK NESS AND LYNN METCALF

CHECKED BY: ERIK NESS

SPLIT SPOON		* RECOVERY		SOIL DESCRIPTION	TH (FT.)	VISIUAL CONTAM		(a)	LITHOLOGY	тн (FT.)	WELL CONSTRUCTIO
SAMPLE DEPTH (ft)	BLOWS PER 6°	<u>ac</u>	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	STAIN SHEEN HFAVY	回*	RAD.		DEPTH	
0-2	13 48 36 12	75	400	Brown, organic SAND and SILT, some clay, trace roots, damp, TOPSOIL Brown, fine to coarse SAND and GRAVEL, trace silt, wet at 4.0 feet	0-		4	40	0.00 0.00 0.00 0.00 0.00	0.0	- CXXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
4-6	10 7 10 12 8 7	50	0.2		5-		1	40			A
6-8	4 4 4 8	20	0.2				1	40	000		ED PVC –
8-10	38 10 4 1	20	0.2	Grey-brown, fine SAND and SILT, some wood chips, trace gravel, wet Grey, SILT and CLAY, some fine sand, trace shell fragments, wet		À	1	40		8.0 8.4	0.01 SLOTTED PVC
10-12	11	20	0.2		10-		1	40			0.01
12-14	1 1 1 1	25	1.0	Dark grey, fine to coarse SAND and SILT, some wood chips, wet	+		1	40		12.0	*
14-16	11	30	0.4		15-		1	40		•	
16-18	11	20	0.2		1		1	40			
18-20	11	100	1.0	Black, SILT and CLAY, trace fine sand, trace wood chips, wet	4		1	40		18.0	
				END OF BORING AT 20.0 feet	20-					20.0	<u>k</u>

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: DRMO

DATE STARTED: 10/02/90 DATA COMPLETED: 10/02/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JOE RAAB

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 4.3

PROTECTIVE CASING ELEVATION: 6.88

WELL ELEVATION: 8.10

WATER LEVEL: 1.23 (03/21/91)

DATUM: SUBASE

WEATHER: 65', PARTLY CLOUDY

INSPECTOR: ERIK NESS CHECKED BY: ERIK NESS

			<u> </u>	LANTIC	1 1			<u> </u>	L	f 1								
	·		-	END OF BORING AT 20.0 feet	20-									20.0			*	
18-20	11	100	12							1	60							
16-18	18 10 1 2	50	0.4							1	50							
14-16	18 9 3 1	10	0.2	Grey, SILT and CLAY, trace fine sand, trace shell fragments, trace wood chips, wet	15-					1	40					_		
12-14	11 17	40	0.1	Gray, SILT and CLAY, trace fine sand, trace shell fragments, diesel odor, wet						1	40			12.0			U)	
10-12	WOR	0	NA		10-					NA	NA				0.0		SAND —	
8-10	WOR	o	NA	NO RECOVERY						NA	NA			8.0	0.01 SLOTTED PVC			
8-8	16 8 8 7	50	0.1							1	40				PVC			
4-6	8 6 6 4	40	0.2		5-					1	40		000		T			
2-4	16 15 13 7	50	0.1							1	50		0000		-	<u> </u>	X	BENTONITE SEAL
0-2	12 21 33 40	80	0.1	Brown, fine to coarse SAND and GRAVEL, trace silt, trace wood chips, trace brick fragments, wet at 2.9 feet	0-					1	50		2000	0.0			*** GROUT ¥	= .
														<u> </u>	ı			
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6	* RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STAIN	SHEEN	HEAVY	ቯ*	RAD.	SAMPLE ANALYSIS	LITHOLOGY	ОЕРТН				
		VERY		SOIL DESCRIPTION	(FT.)	V.	SI	UA TAI	L M.			AL YSIS	06Y	(FT.)	CO	WE NSTE	ELL RUCT	ION

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: DRMO

DATE STARTED: 09/27/90 DATA COMPLETED: 09/27/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

ATLANTIC

DRILLER: JOE RAAB

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 5.18

PROTECTIVE CASING ELEVATION: 5.18

Page 1 of 1

WELL ELEVATION: 4.9
WATER LEVEL: 1.19 (03/21/91)

DATUM: SUBASE

WEATHER: 75', CLEAR SKIES INSPECTOR: ERIK NESS CHECKED BY: ERIK NESS

					· •	·						,		
		/ERY		SOIL DESCRIPTION	(FT.)	VISIU CONTA	AL M.		ALYSIS	06Y	(FT.)	COV	WE ISTR	LL UCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6*	* RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	ОЕРТН	NONE STAIN SHEEN	HEAVY	RAD.	SAMPLE ANALYSIS	LITHOLOGY	ОЕРТН			
0-2	25 30 17 12	75	0.4	0.0-0.5 ASPHALT Brown, fine to coarse SAND and GRAVEL, trace rusty metal, glass, FILL	0-7			40		0000	0.0	- A -		SROUT
2-4	7 7 9 11	10	0.4				1	40		0000	.5	□ 	<u> </u>	
4-6	7 7 6 9	5	0.4	Brown, fine to coarse SAND and GRAVEL, trace silt, wet at 4.0 feet	5-		1	40	,	000				BENTONITE
6-8	10 11 11 15	1	0.4				1	50	3			O.OI SLOTTED PVC		SAND
8-10	11 10 8 7	25	0.4				1	40	\ \ \	000		- 0.01 SLO		
10-12	15 32	10	0.4		10-		f	40	\ \	000				
12-14	8 10 11 3	10	0.4				1	50	\ \ \	000		*		<u> </u>
14-18	7 9 11 4	10	0.4		15-		1	50		0.0				
16-18	11 10 11 9	25	0.4				1	50	2	000				
18-20	4 4 4 8	0	NA	Grey, SILT and CLAY, trace fine	20-		NA	NA NA	K		19.5			
				sand, trace shell fragments, wet END OF BORING AT 20.0 feet						ì	20.0			

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: DRMO DATE STARTED: 10/15/90

DATA COMPLETED: 10/16/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: JOE RAAB

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 14.05

PROTECTIVE CASING ELEVATION: 14.05

WELL ELEVATION: 13.88 WATER LEVEL: 3.13 (03/21/91)

DATUM: SUBASE

WEATHER: 75°, PARTLY SUNNY INSPECTOR: LYNN METCALF CHECKED BY: ERIK NESS

SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6"	RECOVERY	HNU (ppm)	SOIL DESCRIPTION color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH (FT.)	\vdash	П	SHEEN WAY THAVY	Щ ж	RÁD. (cpm)	SAMPLE ANALYSIS	LIIHOLOGY	ОЕРТН (FT.)	WELL CONSTRUCTION
0-2	9 5 7 4	75	0.6	Brown, fine to medium SAND, some gravel, trace silt, damp	0-				1	40	. 0	0.0.0.0	0.0	
2-4	10 10 12 18	100	0.8	Brown, fine to coarse SAND and GRAVEL, trace silt, wet at 11.0 feet					1	40	0.0	000	3.2	
4-6	22 14 14 20	50	0.8		5-				1	40	0.0	0000		2 in. B
6-8	18 21 30 3 5	75	0.8						1	50	0.0	0000		¥ [
8-10	8 10 26 39	75	0.0		40				1	40	0.	000		TED PVC
10-12	19 25 75 100/5	75	0.0		10-				1	40	0.0	000		TED PVC —
12-14	20 19 18 21	50	0.0		7				1	60	0.0	0000		0.01 SLOTTED PVC
14-16	26 24 21 30	100	0.0		15-				1	60	000	0.1		
16-18	13 36 50 58	75	0.0		1				1	40	1.0	00		
18-20	56 72 85 70	100	0.6		20-				1	40	0.00	0000		
			A 7	END OF BORING AT 20.0 feet			20	1	of 1				20.0	

LOWER SUBASE

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: LOWER BASE DATE STARTED: 11/14/90 DATA COMPLETED: 11/14/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 8.0

PROTECTIVE CASING ELEVATION: -

WELL ELEVATION: -WATER LEVEL: -

DATUM: SUBASE

WEATHER: 35', CLEAR SKIES, LIGHT WIND

INSPECTOR: ERIK NESS AND CURTIS NICHOLS

CHECKED BY: ERIK NESS

		ERY		SOIL DESCRIPTION	(FT.)	VI	SI	JAL AM.			ANALYSIS	06Y	(FT.)	WELL CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6°	% RECOVERY	(ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN		NONE	STAIN	FEAVY	Щ×	RAD.	SAMPLE AN	LITHOLOGY	DEPTH	
				Brown, fine to medium SAND and GRAVEL, some silt, damp, FILL	0-							V 0	0.0	
0-2	AUGER 25 28	10	0	GRAVEL, some silt, damp, FILL	-				1	30		000		
2-4	40 96	10	0.4						1	40		OPO		
4-6	35 43 35 30	0	NA	NO RECOVERY	5-				NA	NA			4.0	
6-8	27 29 14 16	25	55.0	WOOD CHIPS, FILL					1	50		NO.00	6.0	
8-10	5 4 5 4	20	0.2	Brown, fine to coarse SAND, trace slit, trace gravel, wet					1	40			8.0	
10-12	3 9 8 3	75	0.2		10-				1	40				
12-14	11	75	0.4						1	40			13.7	
14-16	2 3 3 2	50	0.2	Grey, fine SAND and SILT, trace clay, trace shell fragments, wet	15				1	40			13.7	
18-18	3 2 2 2	50	0.2						1	40				
18-20	2 1 2 2	100	0.2						1	40				
				END OF BORING AT 20.0 feet	20-								20.0)
			A	LANTIC		Pa	Œ	9 1	of	1				

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: LOWER BASE DATE STARTED: 11/14/90 DATA COMPLETED: 11/14/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 7.8
PROTECTIVE CASING ELEVATION: WELL ELEVATION: -

WATER LEVEL: -DATUM: SUBASE

WEATHER: 35', CLEAR SKIES, LIGHT WIND

INSPECTOR: CURTIS KRAEMER CHECKED BY: ERIK NESS

	ERY		SOIL DESCRIPTION	FT.)	VI	SIU ATA	AL M.			LYSIS	.еу	E)	CONSTRUCTION
BLOWS PER 6"	RECOVE	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	ОЕРТН (NONE	STAIN	HEAVY	ਜੁ*	RAD. (cpm)	SAMPLE AN	ГІТНОГС	DEPTH (
AUGER	0	NA	Brown, fine to medium SAND and GRAVEL, some silt, damp, FILL oil stain at 5.7 feet, wet	0-				NA	NA		7000	0.0	
10 8 9 9	40	0.0		-				1	30		0000		
8 9 11 75	40	10.0		5-				1	50		2000		
13 1 1 1	25	NA	WOOD CHIPS, FILL	-				NA	NA		2000		
1 2 5 9	25	3.0	Brown, medium to coarse SAND, trace silt, trace gravel, wet with oil globules	-				1	40			8.0	
5 5 4 3	25	5.5		10-				1	40				
2 1 1 1	0	NA	NO RECOVERY	-				NA	NA				
1 1 1 1	50	1.0	Brown, medium to coarse SAND, trace slit, trace gravel, wet with oil globules Grey, fine SAND and SILT, trace clay, trace shell fragments, trace	15—				1	40			14.0 14.5	
11 11	100	0.8	wood fragments, wet					1	40				
11 11	100	1.5		20_				1	50	·		^^ ^	
			END OF BORING AT 20.0 feet	20-								20.0	
	AUGER 10 8 9 9 8 9 11 75 13 1 11 1 2 5 9 5 5 4 3 2 1 11 1 1 11 1 1 11 1 1 1 11	AUGER 0 10 8 9 40 8 9 40 13 1 25 1 2 25 5 5 4 3 25 2 1 1 0 1 1 50 1 1 100	BLOWS PER 6* HNU (ppm) AUGER	## BLONS PER 6* HNU	SLOWS COMPAND CONTROL CONTRO	Sold Description Sold Descri	SILOWS HNU Color, SOIL, admixture, moisture, other notes, ORIGIN HNU Color, SOIL, admixture, moisture, other notes, ORIGIN HNU Color, SOIL, admixture, moisture, other notes, ORIGIN O O O O O O O O O	BLOWS HINU Color, SOIL, admixture, molsture, other notes, ORIGIN Brown, fine to medium SAND and GRAVEL, some slit, damp, FILL oil stain at 5.7 feet, wet	SOIL DESCRIPTION CONTAM. CONTA	AUGER 0 NA Brown, fine to medium SAND and GRAVEL, some silt, damp, FILL oil stain at 5.7 feet, wet 1 1 30 8 9 40 0.0 5- 1 50 13 1 25 NA WOOD CHIPS, FILL NA NA NA NA NA NA NA NA NA NA NA NA NA	AUGER 0 NA GRAVEL some ailt, damp, FILL 0 NA NA NA NA NA NA NA NA NA NA NA NA NA	SOUR DESCRIPTION CONTAM. NA NA NA NA NA NA NA N	AUGER 0 NA GRAVEL, some silt, damp, FILL 0.0 NA NA NA 0.0 0.0 S - 1 30 0.0 NA NA NA 0.0 0.0 S - 1 50 0.0 NA NA NA 0.0 0.0 NA NA NA NA 0.0 0.0 NA NA NA 0.0 0.0 NA NA NA 0.0 0.0 NA NA NA 0.0 0.0 NA NA NA 0.0 0.0 NA NA NA 0.0 0.0 NA NA NA 0.0 0.0 NA NA NA 0.0 0.0 NA NA NA 0.0 0.0 NA NA NA 0.0 0.0 NA NA NA 0.0 0.0 NA NA NA NA 0.0 0.0 NA NA NA 0.0 0.0 NA NA NA 0.0 0.0 NA NA NA 0.0 0.0 NA NA NA 0.0 0.0 NA NA NA 0.0 0.0 NA NA NA 0.0 0.0 NA NA NA 0.0 0.0 NA NA NA 0.0 0.0 NA NA NA 0.0 0.0 NA NA NA 0.0 0.0 NA NA NA 0.0 0.0 NA NA 0

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: LOWER BASE DATE STARTED: 11/14/90 DATA COMPLETED: 11/14/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 7.9 PROTECTIVE CASING ELEVATION: -WELL ELEVATION: -WATER LEVEL: -DATUM: SUBASE

WEATHER: 40°, CLEAR SKIES, LIGHT WIND INSPECTOR: CURTIS NICHOLS AND ERIK NESS

CHECKED BY: ERIK NESS

CDLIT		* RECOVERY		SOIL DESCRIPTION	(FT.)			IUA ITAI				ANALYSIS	, 106Y	(FT.)	WELL CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6	RECO	(ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STAIN	SHEEN	HEAVY	j *	RAD. (CDM)	SAMPLE A	LITHOLOGY	DEPTH	
0-2	AUGER 11 16	25	0.2	0.0 - 1.0 ASPHALT AND CONCRETE Brown, fine to medium SAND, some gravel, trace silt, damp, FILL	0-					1	30	1	7 00	1.0	
2-4	18 15 18 33	75	3.8							1	40	7	0000		
4-8	17 29 39 99	5	9.4	Oil stain	5-					1	40	7	2000		
6-8	19 5 4 3	50	8.5	Wet at 6.0 feet, oil globules in saturated zone, WOOD at 8.0 feet						1	40		0000		
8-10	5 5 8 4	0	NA	NO RECOVERY					7	ΙA	NA	1	7 7.	8.0	
10-12	3 3 2 1	0	NA		10-				1	IA	NA				
12-14	2 2 2 2	50	4.0	Brown, medium to coarse SAND and GRAVEL, wet with oil globules						1	40	K	00.		
14-16	4 5 10 6	100	8.5		15-					1	40	0	000		•
16-18	4 3 2 3	100	4.0		1					1	40	0 . 0	000		
18-20	13	100	2.5	Grey, fine SAND and SILT, trace clay, trace shell fragments, trace wood fragments, wet	-					1	40			17.8	
			-	END OF BORING AT 20.0 feet	20-								1111	20.0	

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: LOWER BASE DATE STARTED: 11/14/90 DATA COMPLETED: 11/14/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 8.3

PROTECTIVE CASING ELEVATION: -

WELL ELEVATION: -WATER LEVEL: -

DATUM: SUBASE

WEATHER: 45°, CLEAR SKIES, LIGHT WIND

INSPECTOR: CURTIS NICHOLS AND ERIK NESS

CHECKED BY: ERIK NESS

		ERY		SOIL DESCRIPTION	(FT.)	V C	21	IU!	L M.			ALYSIS)GY	(FT.)	WELL CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6*	*RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	ОЕРТН (NONE	STATA	SHEEN	HEAVY	ቯ*	RAD.	SAMPLE AN	LITHOLOGY	DEPTH	
		A PARTICULAR DE LA CONTRACTOR DE LA CONT			0-7									0.0	
0-2	AUGER 8 13	25	0.1	0.0 - 1.0 ASPHALT AND CONCRETE Brown, fine to medium SAND, some gravel, trace slit, damp,						1	30		o. o. o. o. o. o. o. o. o. o. o. o. o. o	1.0	
2-4	13 13 10 9	25	0.2							1	50		00		
4-6	13 13 18 20	50	4.9	Rust colored stain from 4.8 – 5.0 feet	5-					1	50		o. o. o. o. o. o. o. o. o. o. o. o. o. o		
6-8	10 9 8 8	0	NA	NO RECOVERY	-					NA	NA			6.0	
8-10	5 3 4 7	100	1.2	Brown, fine to medium SAND, some gravel, trace silt, damp, Brown, fine SAND and SILT, trace gravel, wet at 8.0 feet	10-					1	50	1	0. 0. 0	9.0	ı
10-12	11 8 9 4	50	0.5	Brown, medium to coarse SAND and GRAVEL, wet	10					1	50	-	000	10.0	
12-14	11	25	0.3	Grey, fine SAND and SILT, trace clay, trace shell fragments, trace wood fragments, wet 18.0 – 18.0 Slight oil sheen	-					4	50			11.0	
14-16	2 1 1 2	50	0.4		15					1	40				
16-18	11 11	25	0.4							1	40				
18-20	2 1 1 2	100	0.4		20-					1	50				0
				END OF BORING AT 20.0 feet	- 20-									20.	·
			A	TLANTIC		Pa	a(зe	1	of	1				

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: LOWER BASE DATE STARTED: 11/14/90 DATA COMPLETED: 11/14/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 8.2

PROTECTIVE CASING ELEVATION: -

WELL ELEVATION: -

WATER LEVEL: -

DATUM: SUBASE

WEATHER: 45', CLEAR SKIES, LIGHT WIND

INSPECTOR: CURTIS NICHOLS AND ERIK NESS

CHECKED BY: ERIK NESS

		ЕЯÝ		SOIL DESCRIPTION	(FT.)	V: C:	ISI	UA FAN	L 1.			ANALYSIS	06Y	(FT.)	WELL CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6"	RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	i	NONE	STAIN	SHEEN	HEAVY J	<u>ц</u> ж	RAD. (com)	SAMPLE AN	LITHOLOGY	DEPTH	
0-2	AUGER	0	NA	0.0 - 1.0 ASPHALT AND CONCRETE	0-					NA	NA			1.0	
2-4	4 9 9 8	0	NA	NO RECOVERY						NA	NA			2.0	
4-6	7 4 3 3	50	0.4	Brown, fine to medium SAND and GRAVEL, trace silt, trace cobbles, moist	5-					1	30		0.00	4.0	
6-8	4 8 8 8	0	NA	NO RECOVERY						NA	NA			6.0	
8-10	5 6 7 4	50	0.4	Brown, fine to medium SAND and GRAVEL, trace silt, trace cobbles, moist Oil sheen at 12.0 feet	10-					1	30		0.00	8.0	·
10-12	5 1 1 1	50	0.7		10-					1	30				
12-14	1 2 3 2	75	1.5							1	30				
14-16	4 3 2 2	75	9.0	Brown, fine SAND, some gravel, oil sheen, wet	15—					1	30			14.0	
16-18	2 1 1 1	100	3.0							1	30			40.0	
18-20	3 4 4 4	100	9.5	Brown, medium to coarse SAND and GRAVEL, trace silt, trace cobbles, wet	20-					i	30		0.00.	18.0	
				END OF BORING AT 20.0 feet	20-									20.0	

_ATLANTIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: LOWER BASE DATE STARTED: 11/05/90 DATA COMPLETED: 11/05/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 13.73

PROTECTIVE CASING ELEVATION: 13.73

WELL ELEVATION: 13.36 WATER LEVEL: 3.58 (03/21/91)

DATUM: SUBASE

WEATHER: 70', PARTLY CLOUDY

INSPECTOR: ERIK NESS CHECKED BY: ERIK NESS

SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6'	* RECOVERY	HNU (ppm)	SOIL DESCRIPTION color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH (FT.)	C	TMC	SHEEN	LEL	% NA N	CDM)	LITHOLOGY	ОЕРТН (FT.)	WELL CONSTRUCTION
0-2	AUGER 23 13	75	0.3	0.0 - 0.5 ASPHALT Brown, fine to medium SAND and SILT, trace gravel, damp	0-1				1		50) 0.0	0.0 0.5 1.0	-
2-4	7 8 6 7	80	1.5	Light brown, fine to coarse SAND and GRAVEL, trace silt, damp					1		10	000		- 2 In. BLANK PVC
4-6	3 4 4 10	50	1.0		5				1	6	30	0 00		- 2 In. BLANK .: KXXXXXX .: KXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
6-8	22 18 13 10	50	0.5						1		30	0.00		*
8-10	15 15 18 23	75	1.2		-				1		30	0 00	•	
10-12	11 17 21 27	75	15.0	Diesel odor, wet at 10.0 feet	10-						30	0.00	1	D PVC —
12-14	21 100/2	40	30.0	Grading to gray color	-					1	30		١	— 0.01 SLOTTED PVC
14-16	17 21 32 11	50	1.0	Grading to light brown	15-						30	0.00	•	1 1 1-1
16-18	11 11 11 14	50	1.0		-						40	0.00	•	¥ : 4
18-20	7 20 31 45	100	3.0	Grading to gray, fine to medium SAND at bottom of spoon	-						80			
				END OF BORING AT 20.0 feet	20-								20.0) <u> </u>

<u>ATLANTIC</u>

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: LOWER BASE DATE STARTED: 11/05/90 DATA COMPLETED: 11/05/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 13.23

PROTECTIVE CASING ELEVATION: 13.23

WELL ELEVATION: 12.80 WATER LEVEL: 3.59 (03/21/91)

DATUM: SUBASE

WEATHER: 70', PARTLY CLOUDY

INSPECTOR: ERIK NESS AND CURTIS NICHOLS

CHECKED BY: ERIK NESS

		'ERY		SOIL DESCRIPTION	(FT.)	VI CC	IS:	UA TAI	L M.			ANAL YSIS	06Y	(FT.)	WELL CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6°	RECOVERY	(ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STAIN	SHEEN	HEAVY	ቯ*	RAD.	SAMPLE AN	LITHOLOGY	ОЕРТН	
0-2	AUGER 12 15	50	1.0	0.0 - 0.5 ASPHALT Brown, fine to coarse SAND and GRAVEL, trace silt, damp	- °					•	40		0.00	0.0 0.5	
2-4	13 10 10 11	50	1.0							1	40				- 2 in. BLANK PVC
4-6	9 10 11 13	75	1.0		5-					1	40				- 2 in. BLANK PVC
6-8	13 13 10 12	75	1.5							1	50		0000		* : -
8-10	10 13 16 1 8	75	1.5							1	60		0000		— 0.01 SLOTTED PVC ———————————————————————————————————
10-12	7 5 4 3	50	100	Dark zone of contamination and diesel odor, wet at 10.0 feet	10-					t	50) PVC
12-14	4 6 8 8	75	110							1	40				0.01 SLOTTED PVC
14-16	7 5 5 8	90	10.0	Light brown, medium to coarse SAND some gravel, trace silt, wet	15-					1	30			14.0	1 1.1-11
18-18	8 6 7 8	75	7.0							1	40				
18-20	7 13 18 23	100	8.0		30					1	40				
				END OF BORING AT 20.0 feet	20-									20.0)

<u>ATLANTIC</u>

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: LOWER BASE DATE STARTED: 11/07/90 DATA COMPLETED: 11/07/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 13.15

PROTECTIVE CASING ELEVATION: 13.15

WELL ELEVATION: 12.89
WATER LEVEL: 3.56 (03/21/91)

DATUM: SUBASE

WEATHER: 45°, CLEAR SKIES

INSPECTOR: ERIK NESS AND CURTIS NICHOLS

CHECKED BY: ERIK NESS

		ÆRY		SOIL DESCRIPTION	(FT.)	VI VI	SI	UAL AM				ANALTSIS	.0GY	(FT.)	CON	WE ISTR	LL UCT	ION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6"	* RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STAIN	SHEEN	E	34	(CDM)	SAMPLE AF	LITHOLOGY	DEPTH				
				-														
0-2	9 8 9 7	50	0.5	Brown, organic silt, and medium sand, trace root structures, damp TOP SOIL Brown, medium SAND and SILT, trace cobbles, damp	0-7					1	60			1.0	T		GROUT —¥	
2-4	6 4 4 8	30	0.5	;	-					1	60				2 in. BLANK PVG		*	tre L
4-8	9 12 12 13	0	NA	NO RECOVERY	5-					Α	NA			4.0	— 2 in. Bl		*	BENTÔNITE SEAL
6-8	3 5 5 7	40	1.0	Light brown, coarse SAND, trace silt, trace cobbles, wet at 10.0 feet						1	40	•		6.0	*			
8-10	6 7 5 6	70	15.0		10-					1	50	•						
10-12	9 8 6 6	100	50.0	Dark zone of contamination and diesel odor, wet	-					1	40	•	•••		red pyc —			
12-14	6 9 11 12	50	90.0		-					1	40	•			0.01 SLOTTED PVC		SAND	
14-16	8 9 13 12	50	50.0		15-					1	60	•			1	1 -1-1		
16-18	5 9 7 13	50	22.0	Light brown, fine to medium SAND, trace gravel, trace silt, wet						1	50	0.00	0 0 0 0 0	1	*			
18-20	11 13 14 17	100	20.0	Light brown, fine to medium SAND	20-					1	40	0	0.0	19.5			<u> </u>	
				and GRAVEL, trace silt, wet END OF BORING AT 20.0 feet										20.0			······································	

ATLANTIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: LOWER BASE DATE STARTED: 11/07/90 DATA COMPLETED: 11/07/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 10.29

PROTECTIVE CASING ELEVATION: 10.29

WELL ELEVATION: 10.14 WATER LEVEL: 1.88 (03/21/91)

DATUM: SUBASE

WEATHER: 50°, CLEAR SKIES

INSPECTOR: ERIK NESS AND CURTIS NICHOLS

CHECKED BY: ERIK NESS

		ERY		SOIL DESCRIPTION	(FT.)	VI VI	ISI TNC	UAL FAM			ANIALVETE	06Y	(FT.)	CONSTRU	CTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6"	# RECOVERY	(ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH (NONE	STAIN	SHEEN	LEL	RAN	(CDM)	LITHOLOGY	DEPTH		
0-2	AUGER 21 24	40	16.0	0.0 - 0.2 ASPHALT Brown, fine to coarse SAND and GRAVEL, some silt, damp, FILL	0-1				1	16	30	DO OD	0.0	. BLANK PVC — Y	**************************************
2-4	30 20 14 9	50	13.0	2.0 - 2.5 ASPHALT Brown, fine to coarse SAND and GRAVEL, some silt, trace cobbles, damp					1		50	0.00	2.0 2.5	2 In. BLANK PVC	BENTONITE
4-6	9 10 8 7	50	15.0	Warm split spoon	5				1		10	0000	1	*	
6-8	4 8 8 3	50	15.0	Wet at 6.0 feet, outside of spoon hot	-				1		40			K 0.01 SLOTTED PVC	
8-10	40 4 3 7	0	NA	NO RECOVERY					N.	A 1	ΑA		8.0	0.01 SLOTTED PVC -	
10-12	3 3 4 3	5	NA	WASH, slight oil sheen on water	— 10— -				N	4 1	NΑ			0.01 SL07	SAND
12-14	3 2 2 6	0	NA	NO RECOVERY					N	A 1	NA				
14-16	8 10 9 10	50	10.0	Grey, medium to coarse SAND, trace silt, trace gravel, wet, (water is hot)	15-				1		40		14.0		
16-18	4 3 7 4	50	17.0	Grey, fine to coarse SAND and GRAVEL, trace silt, oil sheen, wet, (water is hot)					1		50	0.00	10.0		
18-20	4 8 9 7	100	17.0		-				1		40	0.00			
	<u></u>	1		END OF BORING AT 20.0 feet	20-							p.V.U.] 20.0	ر ننا	<u>¥</u> .

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: LOWER BASE DATE STARTED: 11/08/90 DATA COMPLETED: 11/08/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 11.72

PROTECTIVE CASING ELEVATION: 11.72

WELL ELEVATION: 11.13
WATER LEVEL: 2.17 (03/21/91)

DATUM: SUBASE

WEATHER: 40°, PARTLY CLOUDY, WINDY INSPECTOR: ERIK NESS AND CURTIS NICHOLS

CHECKED BY: ERIK NESS

		ERY		SOIL DESCRIPTION	(FT.)	VI CC	ISI TNC	UAL F AM	ī.			ANALYSIS	эбҮ	(FT.)	COI	WE VSTF	RUC	TIO
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6"	* RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	ОЕРТН (NONE	STAIN	SHEEN	בו בו	₫ ≈	RAD. (CDM)	SAMPLE AN	LITHOLOGY	ОЕРТН (
0-2	8 8 9 10	50	11.5	Brown, organic silt, medium SAND, trace root structures, damp, TOP SOIL Brown, medium SAND, trace silt, trace gravel, damp	0-					1	40			1.0	T		- A	•
2-4	9 11 10 12	70	13.0	u dee graver, damp	1					1	40				K PVC		← GROUT	
46	9 13 9 9	30	13.0	Brown, medium to coarse SAND and GRAVEL, some slit, trace cobbles, damp wet at 10.0 feet	5-					1	40			4.0	- 2 in. BLANK PVC		* - *	NTONI SFAI
6-8	23 13 14 10	30	9.5							1	50		0000		*		. 1	
8-10	13 10 15 15	40	9.0		10-					1	40							
10-12	15 18 27 18	20	8.5							1	40				PVC			
12-14	14 17 25 25	20	8.0							1	40				0.01 SLOTTED PVC	1:17	- SAND -	
14-16	7 7 4 5	100	6.5	Grey, medium to coarse SAND, trace gravel, trace silt, wet Dark brown, PEAT with roots, trace fine sand, wet	15-					1	40			14.0				
16-18	4 3 2 3			NO RECOVERY						•				16.0	<u> </u>			
18-20	3 2 11	100	50.0	Grey-brown, fine to medium SAND, trace gravel, wet						1	NA 40		0.00					,
			Ţ	END OF BORING AT 20.0 feet	20-								10:10	20.0	ı			-

ATLANTIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: LOWER BASE DATE STARTED: 11/13/90 DATA COMPLETED: 11/13/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 21.84

PROTECTIVE CASING ELEVATION: 21.84

WELL ELEVATION: 21.47 WATER LEVEL: 2.86 (03/21/91)

DATUM: SUBASE

WEATHER: 40°, CLEAR SKIES, WINDY

INSPECTOR: ERIK NESS AND CURTIS NICHOLS

CHECKED BY: ERIK NESS

SPLIT SPOON		* RECOVERY		SOIL DESCRIPTION	DEPTH (FT.)	CC	TNI	JAL AM.		n'ê	E ANALYSIS	LITHOLOGY	ОЕРТН (FT.)	WE CONSTR	LL NUCTIO	NC
SAMPLE DEPTH (ft)	BLOWS PER 8*	ac.	(ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DE	ÓZ.	STA	HEA HEA	ਜੁ*	Z 5	SAMP		吕			
					0-7											
0-2	AUGER	0	NA -	Brown, fine to medium SAND and GRAVEL, trace silt, damp					NA	NA		000.	1.0		T	
2-4	18 11 12 14	100	8.0	Brown, medium to coarse SAND, some gravel, damp					1	30		000	3.0	XXXXXX		
4-6	9 8 8 10	100	14.5		5-				1	40						
6-8	8 9 10 15	75	4.5						1	40				J\a	- GROUT -	
8-10	12 18 32 22	100	7.0		-				1	60				2 in. BLANK PVC		
10-12	8 8 9 8	75	30.0	Light brown, coarse SAND and GRAVEL, trace cobbles, moist	10-				1	40			10.0	2 li		
12-14	10 10 11 11	75	15.0						1	60					* HI	
14-16	9 8 10 9	100	500		15-				1	30						
18-18	7 8 10 10	50	20.0	Light brown, fine to medium SAND, trace gravel, wet at 18.0 feet					1	40			16.0			
18-20	7 7 10 11	100	1.0		20				1	40				10.01 SLOTTED PVCK	SAND	
				AUGER TO 28.0 feet	20-								20.0	0.01	\perp	

<u>ATLANTIC</u>

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: LOWER BASE DATE STARTED: 11/13/90 DATA COMPLETED: 11/13/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

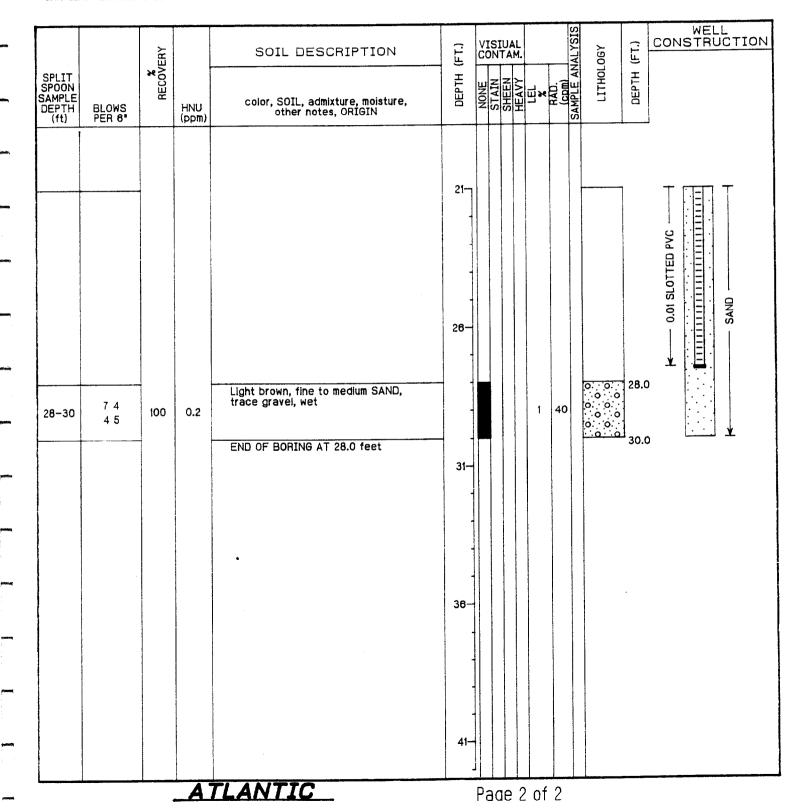
DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 21.84

PROTECTIVE CASING ELEVATION: 21.84

WELL ELEVATION: 21.47


WATER LEVEL: 2.86 (03/21/91)

DATUM: SUBASE

WEATHER: 40°, CLEAR SKIES, WINDY

INSPECTOR: ERIK NESS AND CURTIS NICHOLS

CHECKED BY: ERIK NESS

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: LOWER BASE DATE STARTED: 11/07/90 DATA COMPLETED: 11/07/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 8.19

PROTECTIVE CASING ELEVATION: 8.19

WELL ELEVATION: 7.85 WATER LEVEL: 2.22 (03/21/91)

DATUM: SUBASE

WEATHER: 50', PARTLY CLOUDY INSPECTOR: ERIK NESS AND CURTIS NICHOLS

CHECKED BY: ERIK NESS

		ΈRΥ		SOIL DESCRIPTION	(FT.)			UAL IAM				ANALYSIS	.06Y	(FT.)	CON	WE 1STR	LL UCT	ION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6°	* RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STAIN	SHEEN	LEL	se E	(CDM)	SAMPLE AN	LITHOLOGY	DEPTH				
0-2	AUGER 14 11	50	14.0	0.0 - 0.2 ASPHALT Brown, fine to coarse SAND and GRAVEL, some silt, damp,	0-7				1		60		0.00	i	× PVC ★		3ROUT ≯	.1
2-4	10 12 13 9	0	NA	NO RECOVERY					N	A	NA			2.0	2 in. BLANK PVC		**************************************	SEAL
4-6	8 5 4 3	25	13.5	Brown, fine to coarse SAND and GRAVEL, some silt, trace cobbles, damp	5-						40		0.00.00	•	*			-
6-8	3 4 3 3	0	NA	NO RECOVERY					N	A	NA			8.0				
8-10	5 5 4 5	50	24.0	Brown, medium to coarse SAND and GRAVEL, some cobbles, grading to grey stain, diesel odor, wet at 12.0 feet						1	40		000	1	0.01 SLOTTED PVC			
10-12	7 5 4 2	5	30.0		10-					1	40				0.01		SAND	
12-14	8 7 4 2	50	25.0	Brown, medium to coarse SAND and GRAVEL, some cobbles, wet							50			1			Š	
14-16	4 3 2 1	10	13.0	Grey, medium to coarse SAND, some gravel, wet	15-						40			14.0		=		
16-18	5 5 2 5	50	18.0	Grey, medium to coarse SAND and GRAVEL, wet	-					1	50		000					
18-20	3 3 2 2	90	12.0							1	60	1			,			
				Grey, fine SAND and SILT, trace clay, trace shell fragments, trace wood fragments, wet END OF BORING AT 20.0 feet	20-								<u> </u>	20.0			<u>.t.</u>	

ATLANTIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: LOWER BASE DATE STARTED: 11/07/90 DATA COMPLETED: 11/07/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 7.80

PROTECTIVE CASING ELEVATION: 7.80

WELL ELEVATION: 7.34 WATER LEVEL: 0.99 (03/21/91)

DATUM: SUBASE

WEATHER: 50°, LIGHT CLOUD COVER

INSPECTOR: ERIK NESS AND CURTIS NICHOLS

CHECKED BY: ERIK NESS

· · · · ·	<u>-</u>				Ţ. ·	T			T		(n	T T	WFIL
		/ERY		SOIL DESCRIPTION	(FT.)	V)	ISI [NC	UA!	L 1.			ALTSI	(FT.)	WELL
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6"	RECOVERY	(pp m)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STAIN	SHEEN	HEAVY	רה אינו	RAD. (CDM)	SAMPLE ANALT	DEPTH	
	11			Brown, fine to medium SAND, some gravel, damp,	0-7						40	00	0.0	
0-2	11	40	0.3							1	40	0.0.0		BLANK PV
2-4	2 7 2 2	40	0.8		-					1	40	0. 0. 0. 0. 0. 0. 0. 0.		1 2 In. BLANK PVC
4-6	1 WOH 11	20	15.0		5-					1	60	0: 0: 0: 0: 0 0: 0: 0		
6-8	3 2 1 1	40	17.0	Wet at 6.0	-					1	40	0.0.0	***************************************	p'Ep'
8-10	11	35	100	Grey zone of oil like contamination	10					1	40	• • • • • • • • • • • • • • • • • • •		A SLOTTE
10-12	3 2 2 2	25	22.0		10-					1	40	0 0		0.0
12-14	4 7 8 8	100	20.0							1	40	0.00		* 0=0
14-16	2 8 4 5	90	13.0		15					1	30	0.0		
16-18	6 9 8 11	100	17.0	Grey, medium to coarse SAND and GRAVEL, wet						1	40	000		2 In. BLANK PVC
18-20	9 5 2 3	75	18.0		20-					1	50	0.00		
20-22	2 1 1 2	5	15.0	Grey, fine SAND and SILT, trace shell fragments, wet	20					1	40		20	

<u>ATLANTIC</u>

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10
LOCATION: LOWER BASE
DATE STARTED: 11/07/90
DATA COMPLETED: 11/07/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 7.80

PROTECTIVE CASING ELEVATION: 7.80

WELL ELEVATION: 7.34

WATER LEVEL: 0.99 (03/21/91)

DATUM: SUBASE

WEATHER: 50', LIGHT CLOUD COVER

INSPECTOR: ERIK NESS AND CURTIS NICHOLS

CHECKED BY: ERIK NESS

en IT		* RECOVERY		SOIL DESCRIPTION	(FT.)	V.C	IS ON	IU/ ITA	L M.		RAD. (cpm)	NALYSIS	ГІТНОГОВУ	(FT.)	CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6°	RECC	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STAIN	SHEEN	HEAVY	⊒ *	RAD. (com)	SAMPLE /	HI1	DEPTH	
20-22	21			AUGER TO 25.0 feet	21-						Andrewski in the state of the s			22.0	2 in. BLAÑK PVC K BACKFILL
25-27	1 1 1 1·	80	5.0	Grey, fine SAND and SILT, trace shell fragments, wet END OF BORING AT 27.0 feet	26-					1	60			25.0 26.0 27.0	
					31-			AND AND THE AND THE AND AND AND AND AND AND AND AND AND AND							
					38-	The second secon									
					41-										

ATLANTIC

Page 2 of 2

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: LOWER BASE DATE STARTED: 11/07/90

DATA COMPLETED: 11/07/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 7.57

PROTECTIVE CASING ELEVATION: 7.57

WELL ELEVATION: 8.91

WATER LEVEL: 0.76 (03/21/91)

DATUM: SUBASE

WEATHER: 50°, PARTLY CLOUDY

INSPECTOR: ERIK NESS AND CURTIS NICHOLS

CHECKED BY: ERIK NESS

		ERY		SOIL DESCRIPTION	(FT.)	V.	ISIU DNT/	AL \M.			ANALYSIS	06Y	(FT.)	CONSTRUCTION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6"	* RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	SHEFN	HEAVY	ਜੁ∗	RAD. (com)	SAMPLE AN	LITHOLOGY	DEPTH	
				Light brown, fine to medium SAND,	- 0-							o. · o. · l	0.0	
0-2	12	50	12.0	trace gravel, damp Wet at 4.0 feet	-				1	40				ANK PVC
2-4	1 2 2 3	50	14.0		-				1	50		0 0 0 0 0 0 0 0 0		2 in. BLANK PVC
4-6	1 1 1 2	75	14.0	Dark brown, medium to coarse SAND and GRAVEL, trace silt, wet	5-				1	40		00	5.0 8.0	
6-8	2 3 4 1	50	15.0	Light brown, fine to coarse SAND, trace gravel trace silt, wet, grading to grey color	-				1	40				
8-10	11 11	0	NA NA	NO RECOVERY	10-				NA	NA			8.0	
10-12	3 2 1 2	0	NA						NA	NA				- 0.01 SLOTTI
12-14	8 5 1 1	25	17.0	Grey, fine SAND, some silt, trace gravel, wet					1	40			12.0	
14-16	11	75	15.0	Grey, fine SAND and SILT, trace shell fragments, wet	15-	-			1	40			14.0	* 13=13
16-18	2 1 2 1	100	13.8						1	40			45	2 in. BLANK PVC
18-20	1 2 2 2	0	NA	NO RECOVERY					NA	NA			18.0	
		1		END OF BORING AT 20.0 feet	20-								- 20.	0 — — —

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: LOWER BASE DATE STARTED: 11/08/90 DATA COMPLETED: 11/08/90

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

GROUND ELEVATION: 8.73 PROTECTIVE CASING ELEVATION: 8.73 WELL ELEVATION: 8.44 WATER LEVEL: 2.17 (03/21/91) DATUM: SUBASE WEATHER: 40°, PARTLY CLOUDY, WINDY INSPECTOR: CURTIS NICHOLS ERIK NESS

CHECKED BY: ERIK NESS

				END OF BORING AT 20.0 feet												
18-20	10 12 15 10	100	N A	Brown, medium to coarse SAND, some gravel, wet	20-					NA	NA			18.0		
18-18	32 11 9 9	100	12.0							1	40					
14-16	19 12 13 20	90	13.0		15-					1	40					
12-14	5 4 12 37	80	15.0							1	40		0.00			
10-12	4 4 5 4	25	10.0							1	40		0.00		- 0.01 SL0	SAND
8–10	7 7 6 8	10	15.0	Brown, fine to coarse SAND and GRAVEL, some cobbles, wet at 8.0 feet	10-					1	40		0.00		0.01 SLOTTED PVC	
6-8	6 8 10 11	50	13.0	Light brown, fine to medium SAND, some gravel, damp						1	40		o o o o o	6.0		
4-6					5										*	
2-4	AUGER				4										in. BLANK PVC	→ ★ → GF BENTONITE SEAL
0-2				Auger to 6.0 feet to avoid driving split spoon through utility lines.	0-									0.0	î	→ GROUT NITE
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6°	# RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN		NONE	STAIN	SHEEN	HEAVY	<u>щ</u> ж	RAD. (CDM)	SAMPLE ANALYSIS	LITHOLOGY	DEPTH		
		ΈRΥ		SOIL DESCRIPTION	(FT.)	VI	(SI	UA TAI	L V			JALYSIS	.06Ү	(FT.)	CONSTR	LL RUCTION

ATLANTIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: LOWER BASE DATE STARTED: 11/08/90 DATA COMPLETED: 11/08/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 8.23
PROTECTIVE CASING ELEVATION: 8.23
WELL ELEVATION: 7.83
WATER LEVEL: 2.13 (03/21/91)

MATER LEVEL: 2.13 (03)

WEATHER: 45', CLEAR SKIES, WINDY

INSPECTOR: ERIK NESS AND ROBERT PRENTISS

CHECKED BY: ERIK NESS

		/ERY	_	SOIL DESCRIPTION	(FT.)	VI	SIU	AL AM.		T	NALYSIS	LOGY	(FT.)	CON	WE STR	UCTIO
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6°	* RECOVERY	(ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STAIN	HEAVY	핔*	RAD. (cpm)	SAMPLE A	LITHOLOGY	рертн (FT.)			
				Brown, fine to coarse SAND and	- 0-							ن	0.0	<u> </u>		r
0-2	15 27 17 12	80	5.0	GRAVEL, trace cobbles, trace silt, damp Grading to grey and wet at 6.0 feet.	-				1	40		0.00		NK PVC →		*** SROUT ENTONITE
2-4	11 10 12 10	50	12.0						1	50		0.00.00.00.00.00.00.00.00.00.00.00.00.0		* 2 in. BLANK PVC		BENTONITE
4-8	12 9 9 13	50	11.0		5-				1	30		0.00				
6-8	5 5 5 5	10	8.0						1	40			ŧ	J/c		
8-10	5	0	NA	NO RECOVERY					NA	NA			8.0	0.01 SLOTTED PVC		
10-12	5 5 5 3	25	5.0	Grey, medium to coarse SAND, wet	10-				1	40			10.0	0.01		SAND
12-14	4 3 4 2	0	NA	NO RECOVERY	-				NA	NA			12.0	¥		
14-16	5 2 2 2	50	5.0	Grey, medium to coarse SAND, wet	15-				1	60			14.0	-		
18-18	4 12 13 10	100	4.0						1	40						
18-20	11 14 18 14	100	3.0						1	40						<u> </u>
		1		END OF BORING AT 20.0 feet	20-								² 20.0	l		

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10 LOCATION: LOWER BASE DATE STARTED: 11/08/90 DATA COMPLETED: 11/08/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 9.55

PROTECTIVE CASING ELEVATION: 9.55

WELL ELEVATION: 9.21

WATER LEVEL: 2.92 (03/21/91)

DATUM: SUBASE

WEATHER: 45', CLEAR SKIES, WINDY

INSPECTOR: ERIK NESS AND CURTIS NICHOLS

CHECKED BY: ERIK NESS

		ERY		SOIL DESCRIPTION	(FT.)	VISI			NA VETE	06Y	(FT.)	CONST	ELL RUCTIO
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6"	RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	SHEEN	ᆸ*	(CDM)	LITHOLOGY	ОЕРТН		
	AUCER			ASPHALT AND CONCRETE	0-					-1-1-1	0.0	T S	
0-2	AUGER 43	50	15.0	Light brown, fine to coarse SAND and GRAVEL, damp Brown, fine to medium SAND and SILT, damp				i	40	0.00.	0.5 1.0	n. BLANK PVC	**************************************
2-4	25 18 12 11	50	20.0	Light brown, fine to medium SAND and GRAVEL, damp				1	40	0.00		2 in. BLANK PVC	**************************************
4-6	7 20 4 5	25	13.0		5-			1	45	0.00			
6-8	3 3 2 2	0	NA	NO RECOVERY	-			NA	NA		6.0	1	
8-10	21	75	22.0	Grey, fine to medium SAND, some gravel, some silt, diesel odor, wet at 8.0 feet				1	40	0 0 0 0 0 0	8.0	D PVC	
10-12	WOH WOH	5	32.0	Grey, fine SAND, some silt, wet	10-			1	40	0.00	10.0	0.01 SLOTTED PVC	SAND
12-14	WOH WOH 3 2	100	15.0	Grey, fine to medium SAND and GRAVEL, some silt, wet				1	40	0.00	•	► 0.01 SLOTTED PVC	√S ————
14-16	. 1 2 1 1	100	16.0		15-			1	30	0.00		¥	
16-18	2 2 2 3	0	NA	NO RECOVERY				NA	NA):0.0:	16.0		
8-20	4 4 5 7	100	20.0	Grey, fine to medium SAND and GRAVEL, some silt, wet Grey, fine SAND and SILT, trace	 			1	40	0.00	18.0		
	U 1			wood fragments, trace gravel, wet END OF BORING AT 20.0 feet	20-						20.0	,	

ATLANTIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: LOWER BASE DATE STARTED: 11/13/90 DATA COMPLETED: 11/13/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 8.94

PROTECTIVE CASING ELEVATION: 8.94

WELL ELEVATION: 8.50

WATER LEVEL: 3.03 (03/21/91)

DATUM: SUBASE

WEATHER: 40°, CLEAR SKIES, WINDY INSPECTOR: ERIK NESS AND CURTIS NICHOLS

CHECKED BY: ERIK NESS

		>-		SOIL DESCRIPTION	12	VI	SIUAL			ANALYSIS	>_	î.	COI	WE 1STR	LL UCT	ION
SPLIT		% OVER			H (FT.)		NTAM	+	Т	ANAL	9070	<u>L</u>				
SPOON SAMPLE DEPTH (ft)	BLOWS PER 6"	* RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	ОЕРТН	NONE	STAIN	⊒×	RAD. (CDM)	SAMPLE	LITHOLOGY	DEPTH (FT.)				
	<u></u>			ASPHALT AND CONCRETE	_ ^ _							0.0	_	.,		
0-2	AUGER 77	40	0.2	Dark brown, fine to medium SAND and GRAVEL, some cobbles, damp				1	30	3			PVC +	KXXXIIIIIII	* GROUT Y	
	-				1)	.0.01		ANK		¥	ITE
2-4	7 7 7 7	40	0.2					1	30		000		2 In. BLANK PVC	XX	*	BENTÔNITE SEAL
<u> </u>				NO RECOVERY	1							4.0	*			Œ.
4-6	6 6 6 7	0	NA		5-			NA	NA		*		1			
8-8	17 8 8 7	40	0.5	Dark brown, fine to medium SAND, some gravel, some cobbles, wet at 8.0 feet				1	40	į.	0. 0 0 . 0 0 . 0 0 . 0 .	6.0				
										c	· · · · ·		, VC			
8-10	8 31 17 8	50	4.0					1	40	Ħ.	· · · · · · · · · · · · · · · · · · ·		TTED (
10-12	6 4 6 6	50	1.0	Grey, fine SAND and SILT, trace shell fragments, trace wood, wet	10			1	40			10.0	- 0.01 SLOTTED PVC		SAND	
					1 1					-	- : - :				√ S –	
12-14	4 2 1 2	50	0.5					1	40		. . .					
14-16	5 4 7 4	50	0.2	Grey, fine SAND, trace silt, trace wood, wet	15-			1	40			14.0	*			
18-18	5 4 4 5	50	0.2	Light brown, fine to medium SAND and GRAVEL, trace cobbles, wet				1	50		00	18.0				
	50									١ĸ						
18-20	5 8 8 9	50	0.5					1	40	K	o. ; o . o o.					
				END OF BORING AT 20.0 feet	20-						. V U.	20.0		<u> </u>	. <u>¥</u> .	

ATLANTIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: LOWER BASE DATE STARTED: 11/13/90 DATA COMPLETED: 11/13/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 8.48

PROTECTIVE CASING ELEVATION: 8.48

WELL ELEVATION: 7.98

WATER LEVEL: 0.45 (03/21/91)

DATUM: SUBASE

WEATHER: 45', CLEAR SKIES, WINDY

Page 1 of 1

INSPECTOR: ERIK NESS AND CURTIS NICHOLS

CHECKED BY: ERIK NESS

		* RECOVERY		SOIL DESCRIPTION	(FT.)	>io	SI	UAL		7		ANALYSIS	L06Y	(FT.)	COI	WE VSTI	ELL RUCT	ION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6*	RECO	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STAIN	SHEEN	- I	.		SAMPLE A	LITHOLOGY	ОЕРТН				
					entreprise per apparation de la constitución de la				-									
0-2	AUGER 17 18	50	0.0	ASPHALT AND CONCRETE Dark brown, fine to medium SAND and GRAVEL, trace cobbles, damp Wet at 8.0 feet.	07					1	80		0.00	0.0	Pvc 🖈		ROUT +	
2-4	7 8 8 9	50	1.0							1	80				2 In. BLANK PVC		**** GROUT *	BENTÔNITE SEAL
4-6	11 11 13 9	50	10.0		5-					1	40		0.00		*	∤- ∐		ā
8-8	11 18 13 10	10	90.0							1	40		0.00					
8-10	8 8 7 8	5	90.0		10-					1	40			10.0	0.01 SLOTTED PVC			
10-12	8 31 90 75	0	NA	NO RECOVERY					1	A	NA		o 20	12.0	— 0.01 SL		SAND	
12-14	35 2 9 19 13	100	450	Brown, medium to coarse GRAVEL, some sand, some cobbles, wet						1	40		0000 00000 00000	12.0	and property of the second		S	e e v
14-16	13 15 15 10	100	300		15-					1	40		000	16.0	<u>\psi}</u>	旦		
18-18	13 14 12 14	50	70.0	Grey, fine SAND and SILT, trace shell fragments, trace wood, oil sheen at top spoon, wet						1	40			18.0				
18-20	18 12 14 12	50	30.0	Grey, fine SAND, trace silt, wet	20-					1	40			20.0				
				END OF BORING AT 20.0 feet														

ATLANTIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: LOWER BASE DATE STARTED: 11/12/90 DATA COMPLETED: 11/12/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

ORILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 7.70

PROTECTIVE CASING ELEVATION: 7.70

WELL ELEVATION: 7.25

WATER LEVEL: 0.30 (03/21/91)

DATUM: SUBASE

WEATHER: 45', CLEAR SKIES, WINDY

INSPECTOR: ERIK NESS AND CURTIS NICHOLS

CHECKED BY: ERIK NESS

SPLIT		* RECOVERY		SOIL DESCRIPTION	I (FT.)	C	SIL	AM.		T	SAMPLE ANALYSIS	гітногову	H (FT.)	COI	WE VSTR	LL UCT	ION
SPOON SAMPLE DEPTH (ft)	BLOWS PER 6	REC	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	STAIN	HEAVY	Щ ж	RAD.	SAMPLE	LITH	DEPTH				
0-2	3 3 3	50	0.0	Light brown, fine to medium SAND, some gravel, damp	0-1				1	40		o. o. o. o. o. o. o. o. o. o. o. o. o. o	0.0	A PVC	2 2 2	¬- 	
2-4	3 7 6 7	90	0.0		_				1	60		o. · o. · o o. · o · o o. · o · o		2 in. t			
4-6	8 7 8 8	90	5.0		5-				1	80		o. o. o.					
6-8	4 5 7 4	50	12.0	Light brown, medium to coarse SAND and GRAVEL, wet at 6.0 feet					1	50		0.00		0.01 SLOTTED PVC			
8-10	8 5 6 8	50	14.0	Grading to grey					1	50				— 0.01 SL		11.	
10-12	21	50	16.0	Grading to dark brown stain	10-				1	40		0000				BACKFIL	
12-14	11	50	16.0						1	40				¥ 2)			
14-16	1 WOH WOH WOH	50	5.0	Grey, fine SAND and SILT, trace shell fragments, trace wood fragments, wet	15-				1	40			14.0	2 In. BLANK PVC			
18-18	1 WOH	50	1.0						1	40				*			
18-20	11	0	NA	NO RECOVERY	20-				NA	NA			18.0		7, 12		
				END OF BORING AT 20.0 feet	20.								20.0	}	1 4		

ATLANTIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: LOWER BASE DATE STARTED: 11/12/90 DATA COMPLETED: 11/12/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 7.64

PROTECTIVE CASING ELEVATION: 7.64

WELL ELEVATION: 7.30

WATER LEVEL: 0.33 (03/21/91)

DATUM: SUBASE

WEATHER: 45', CLEAR SKIES, VERY WINDY INSPECTOR: ERIK NESS AND CURTIS NICHOLS

CHECKED BY: ERIK NESS

						,				,					
		ÆRY		SOIL DESCRIPTION	(FT.)	VIS	AUIE	L 4.	·	ANAL YSIS	.06Y	(FT.)	CONST	ELL RUCT	ION
SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6"	* RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN	DEPTH	NONE	SHEEN	HEAVY	RAD.	SAMPLE AN	LITHOLOGY	ОЕРТН			
				00.005	- 0-						<u> </u>	0.0			
0-2	1 11	NA	NA	Brown, fine to medium GRAVEL, damp				NA	NA		000		NK PVC		
2-4	1 2	NA	NA	Brown, fine to medium SAND trace gravel, damp Wet at 6.0 feet				NA	NA		o. o. o. o. o. o. o. o. o. o.	2.0	¥ 2 In. BLANK PVC	7	
4-6	3 2 2 2	NA	NA		5-			NA	NA NA		0.000			7. 7.	
8-8	12 33	NA	NA					NA	NA				TED PVC —		
8-10	4 3 9 11	NA	NA	Brown, coarse SAND and GRAVEL, stained, wet	10			N.A	NA			1	0.01 SLOTTED PVC	0	
10-12	2 1 2 1	NA	NA		10-			N/	NA					BACKFILL	
12-14	11	NA	NA	Grey, fine SAND and SILT, trace shell fragments, trace wood fragments, wet				NA	NA			12.0	* 1		
14-18	11	100	5.0		15-			•	40				PVC -		
16-18	1 WOH 1 WOH	100	5.0					1	40				∢		
18-20	11	100	7.0					1	40				¥ 0		
				END OF BORING AT 20.0 feet	20-							20.0)		

ATLANTIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1256-10 LOCATION: LOWER BASE DATE STARTED: 11/12/90 DATA COMPLETED: 11/12/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 7.71

PROTECTIVE CASING ELEVATION: 7.71

WELL ELEVATION: 7.47

WATER LEVEL: 0.80 (03/21/91)

DATUM: SUBASE

WEATHER: 45', CLEAR SKIES, WINDY

INSPECTOR: ERIK NESS AND CURTIS NICHOLS

CHECKED BY: ERIK NESS

		>-		SOIL DESCRIPTION	(FT.)	V	IS:	IU/	١Ļ			ANAL YSIS	٠,	(FT.)	COV	WE: ISTR	LL UCT	101	4
SPLIT SPOON SAMPLE	OL ONG	* RECOVERY	НИЦ	color, SOIL, admixture, moisture, other notes, ORIGIN	1	\vdash	Γ	HEEN	М	⊒*	RAD.	MPLE ANAL	LITHOLOGY	ОЕРТН (F					
DEPTH (ft)	BLOWS PER 6		(ppm)	other notes, ORIGIN		Ĺ	,	S	_		<u> </u>	SA							
0-2	2 2 3	50	0.2	Light brown, fine to medium SAND, some gravel, damp,	0-					†	40		0.000	0.0	2 In. BLANK PVC		\		
2-4	3 3 4 5	75	12.0	Light brown, fine to medium SAND and GRAVEL, damp Wet at 6.0 feet.	_					1	40				★ 2 in. BL				-
4-6	4 4 8 7	75	13.0		5-					i	30		000						
8-8	5 8 6 3	95	12.0	Rust brown, fine to medium SAND and GRAVEL, wet						1	40		000		ED PVC —				
8-10	2 2 1 3	50	13.5	and onaver, wet						-1	40		0 00		0.01 SLOTTED PVC				
10-12	3 4 6 8	50	12.0	Brown, medium to coarse SAND and GRAVEL, wet	10-					1	40		0 0		0		- BACKFILL		
12-14	6 8 7 11	75	12.0							1	40		0.00	1	*				
14-16	5 5 6 5	50	13.0	Grey, fine to medium SAND and GRAVEL, wet	15-					1	40		0.00	1					
18-18	1 2 1 1	50	10.0		_					1	50				2 in. BLANK PVC	7 7			
18-20	2 1 2 3	0	N A	NO RECOVERY						NA	NA			18.0	 	777			
				AUGER TO 30.0 feet	20-														

ATLANTIC

PROJECT: IR STUDY NSB - NLON

PROJECT NO: 1258-10
LOCATION: LOWER BASE
DATE STARTED: 11/12/90
DATA COMPLETED: 11/12/90

DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.

DRILLER: TOM BROWN

DRILLING METHOD: HOLLOW STEM AUGER

SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 7.71

PROTECTIVE CASING ELEVATION: 7.71

WELL ELEVATION: 7.47

WATER LEVEL: 0.80 (03/21/91)

DATUM: SUBASE

WEATHER: 45', CLEAR SKIES, WINDY

INSPECTOR: ERIK NESS AND CURTIS NICHOLS

CHECKED BY: ERIK NESS

			ERY		SOIL DESCRIPTION		(FT.)	VI	SIL	JAL AM.		AI VCTC	06Y	(FT.)	CON	NE WE WE	UCT.	ION	
	SPLIT SPOON SAMPLE DEPTH (ft)	BLOWS PER 6*	RECOVERY	HNU (ppm)	color, SOIL, admixture, moisture, other notes, ORIGIN		ОЕРТН	HONE	STAIN	HEAVY	% 191	(CDM)	LITHOLOGY	DEPTH (FT.)					
														4.					
-							21-								T	M M			
							4												
							28-					,			y				
						e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	20-								2 In. BLANK PVC		BACKFILL -		
															2 ln.		! !		
	30-32	5 5 5 5	100	15.0	Grey, fine to medium SAND, trace gravel, wet		31-				1	50	0. 0. 0. 0. 0. 0. 0. 0.	30.0		j j			
					AUGER TO 35.0 feet									32.0					
															*		<u>*</u>		
					END OF BORING AT 35.0 feet		38-				-			35.0					
						Philippe and the second							And the second s						
							41-												
				A	TLANTIC		F	a	aе	2	of	2							-

HYDRAULIC CONDUCTIVITY DATA

SLUG TEST METHOD FOR UNCONFINED AQUIFERS*

Bouwer, H. and R.C. Rice, 1976. A slug test method for determining REFERENCE:

hydraulic conductivity of unconfined aquifers with completely or partially

penetrating wells, Water Resources Research, vol. 12, no. 3, pp. 423-428.

ASSUMPTIONS: aquifer is unconfined

no delayed yield in the aquifer

aquifer has infinite areal extent

aquifer is homogeneous and isotropic

flow velocity is proportional to the tangent of the hydraulic gradient

flow is horizontal and uniform in a vertical section through the axis of the well

diameter of the well is small so that well storage can be neglected.

SOLUTION:

$$\ln h_o - \ln h_t = \frac{2 K L t}{r_c^2 \ln (r_e/r_w)}$$

where:

initial drawdown in well due to instantaneous removal of water from well [L]

drawdown in well at time t [L] $h_t =$

hydraulic conductivity [L/t]

length of well screen (including gravel pack) [L]

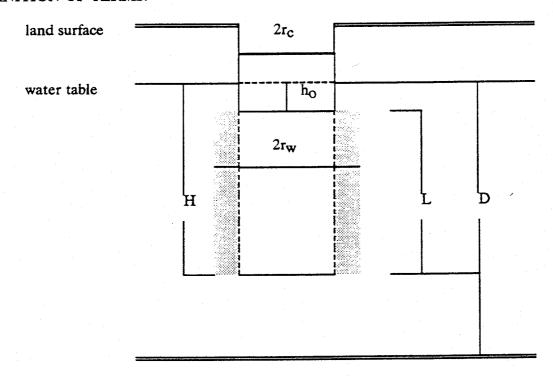
radius of well casing [L] $r_{\rm C} =$

$$\ln\left(r_{\rm e}/r_{\rm w}\right) \ = \left[\frac{1.1}{\ln\left(H/rw\right)} \ + \ \frac{A + B \ln\left[\left(D - H\right)/rw\right]}{L/rw}\right]^{-1} \ if \ D \neq H$$

$$\ln(r_e/r_w) = \left[\frac{1.1}{\ln(H/rw)} + \frac{C}{L/rw}\right]^{-1} \text{ if } D=H$$

dimensionless coefficients that are a function of L/rw and are determined A, B and C =from tables provided in Bouwer and Rice (1976).

SLUG TEST METHOD FOR UNCONFINED AQUIFERS (continued)


re = equivalent radius over which head loss occurs [L]

r_w = radius of well (including gravel pack) [L]

H = static height of water in well [L]

D = saturated thickness of aquifer

DEFINITION OF TERMS:

IMPERMEABLE BASE

^{*} This description of the Bouwer and Rice Method was extracted from Geraghty and Miller's Aqtesolv User Manual (Duffield and Rumbaugh, III, 1989).

VARIABLES USED TO ESTIMATE HYDRAULIC CONDUCTIVITY AND TRANSMISSIVITY

	Variables Measured in Feet						
Well Number	rc	r _w	Н	L	D	h _o	Remarks
till og til en skalligild fær	Torpedo Shops						
7MW1	0.25	0.25	36.06	11	150		Bedrock
7MW2	0.15*	0.25	6.1	9	7.91	1.19	Overburden
	Goss Cove Landfill						
8MW1S	0.15*	0.25	9.74	12	11.83	0.08	Overburden
8MW3S	0.15*	0.25	8.4	12	12.25	0.46	Overburden
8MW4S	0.15*	0.25	7.7	12	11.93	0.34	Overburden
			Area A	Vetland			
2WMW3S	0.083	0.25	14.82	12	33.86	2.31	Overburden
2WMW5S	0.083	0.25	12.37	12	26.1	1.65	Overburden
2MWM1D	0.25	0.25	108	91	150	0.93	Bedrock
2WMW2D	0.25	0.25	24.45	44.93	150	2.4	Bedrock
2WMW3D	0.25	0.25	120.65	49.12	150	0.84	Bedrock
2WMW6	0.25	0.25	37.8	30.53	150	3.12	Bedrock
			Area A	andfill			
2LMW7S	0.083	0.25	12.64	12	24.46	2.43	Overburden
2LMW8S	0.083	0.25	14.9	12	19.6	1.93	Overburden
2LMW7D	0.25	0.25	39.7	10.09	150	0.85	Bedrock
2LMW18D	0.25	0.25	40.25	8.03	150	0.94	Bedrock
			Area A	OBDA			
3MW12S	0.15*	0.25	12.24	12	12.9	2.75	Overburden
	9.20		Area A Do				
2DMW16S	0.15*	0.25	9.07	12	11.32	1.96	Overburden
2DMW10D	0.25	0.25	16.72	16.09			Bedrock
2DMW16D	0.25	0.25	0.9	47.41	150		Bedrock
	DRMO						
6MW2**	0.083	0.25	8.86	12	13.91	0.3	Overburden
6MW4S	0.15*	0.25	9.03	12	16.03		Overburden
6MW5S	0.15*	0.25	5.53	12			Overburden
6MW5D	0.25	0.25	22.93	9.58	150	2.57	
OWWSD	0.22	ر ۵۰۰۷	Lower		150		
13MW6	0.15*	0.25	8.61	12	9.16	<u> </u>	Overburden
13MW7	0.15*	0.25	9.5	12	15.51		Overburden
13MW10	0.15*	0.25	9.21	12	14.46		Overburden
13MW10	0.15*	0.25	9.21 8.7	12	15.05		Overburden
13MW12	0.15*	0.25	8.35	12	11.3		Overburden
13MW13	0.15*	0.25	8.35	12	14.29		Overburden
13MW14	0.15*	0.25	9.7	12	15.39		Overburden

All variables are defined on a preceeding page discussing the Bouwer and Rice Method.

* -
$$r_c$$
 value adjusted according to the following equation:
$$r_c = [r_c^2 + n(r_w^2 - r_c^2)]^{1/2}$$

$$n = porosity$$

because the water level was within the screened interval during the slug displacement test.

** - 6MW2 was analyzed using Cooper and Jacob (1946).

UNSTEADY FLOW TO A WELL IN A CONFINED AQUIFER MODIFIED METHOD

REFERENCE:

Cooper, H.H. and C.E. Jacob, 1946. A generalized graphical method for evaluating formation constants and summarizing well field history, Am. Geophys. Union Trans., vol. 27, pp. 526-534.

ASSUMPTIONS:

• aquifer has infinite areal extent

aquifer is homogeneous, isotropic, and of uniform thickness

• aquifer water table surface is initially horizontal

• pumping rate is constant

• pumping well is fully penetrating

 aquifer is confined - can be used for unconfined aquifers if drawdown is small so that flow to pumping well is horizontal and water is released instantaneously from storage with decline of hydraulic head

flow is unsteady

 diameter of pumping well is very small so that storage in the well can be neglected

values of u are small (i.e., r is small and t is large)

SOLUTION:

The Cooper-Jacob method is a modification of the Theis (1935) method for confined aquifers.

$$s = Q / (4 \pi T) w(u)$$

where:

s = drawdown [L] Q = discharge [L³/t] T = Transmissivity [L²/t] w(u) = well function

If a graph is made where drawdown is plotted on the y-axis (linear) and time is plotted on the x-axis (logarithmic), and a best-fit straight line is fitted to the data points, transmissivity can be calculated by the following equation:

$$T = \frac{264Q}{\Lambda s}$$

where:

T = transmissivity [gpd/ft]

Q = discharge (gpm)

 Δs = change in drawdown over one log cycle

SLUG TEST FOR CONFINED AQUIFERS

REFERENCE:

Cooper, H. H., J. D. Bredehoeft, and S. S. Papadopulos, response of a finite-diameter well to an instantaneous charge of water,

Water Resources Research, vol. 3, no. 1, pp. 263-269.

ASSUMPTIONS:

aquifer has infinite areal extent

aquifer is homogeneous, isotropic, and of uniform thickness

aquifer potentiometric surface is initially horizontal

a volume of water, V, is injected into or discharged from the well

instantaneously

pumping well is fully penetrating flow to pumping well is horizontal

aquifer is confined flow is unsteady

water is released instantaneously from storage with decline of hydraulic

head

diameter of pumping well is very small so that storage in the well can be neglected

SOLUTION:

Integral solution for dimensionless drawdown in well:

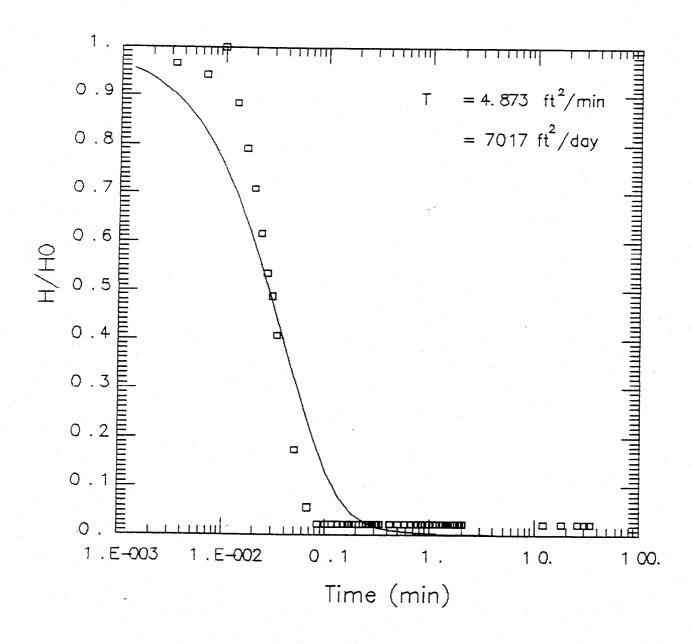
$$H/H_0 = \frac{8\alpha}{\pi^2} \int_0^{\infty} \frac{e^{-\beta u^2/\alpha}}{u \cdot \{[uJ_0(u)-2\alpha J_1(u)]^2 + [uY_0-2\alpha Y_1(u)]^2\}} du$$

Laplace solution for response in well:

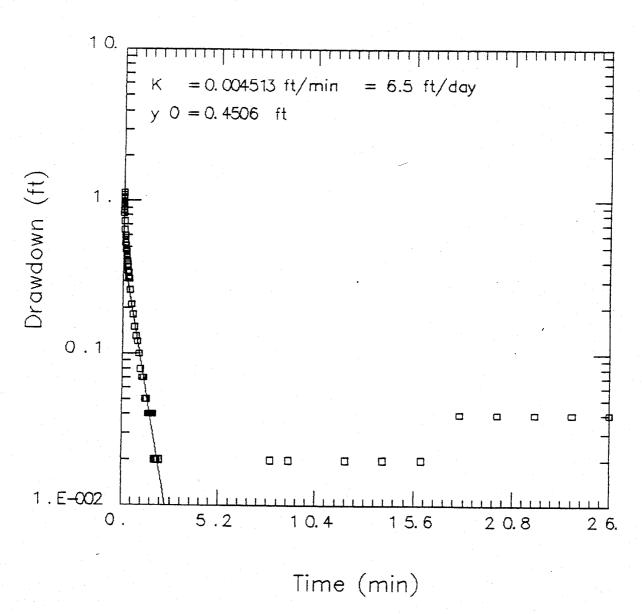
$$\overline{h} = \frac{r_w S H_o K_o(rq)}{T q [r_w q K_o(r_w q) + 2\alpha K_o(r_w q)]}$$

$$q = (pS/T)^{\frac{1}{2}}$$

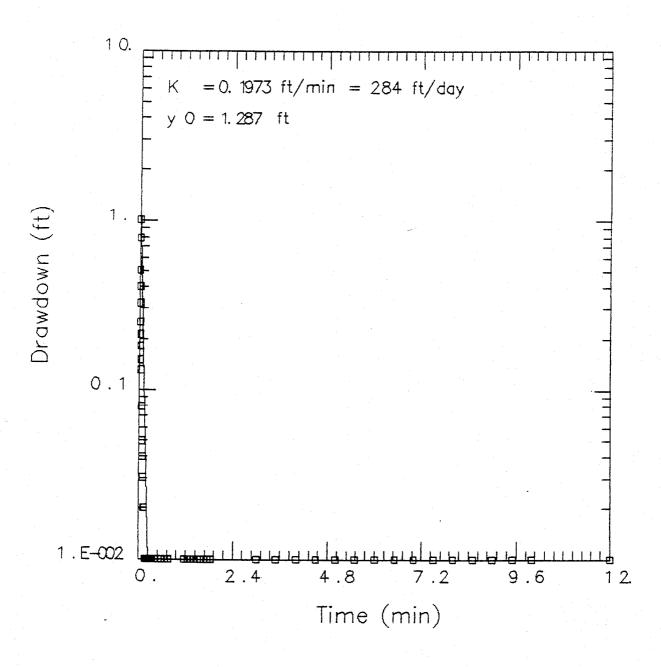
p = Laplace transform variable

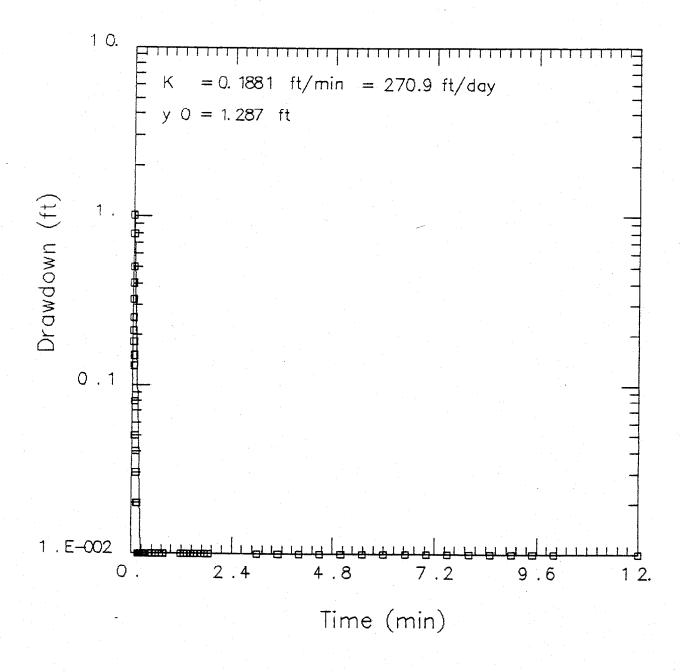

where:

H = head in well at time t [L]

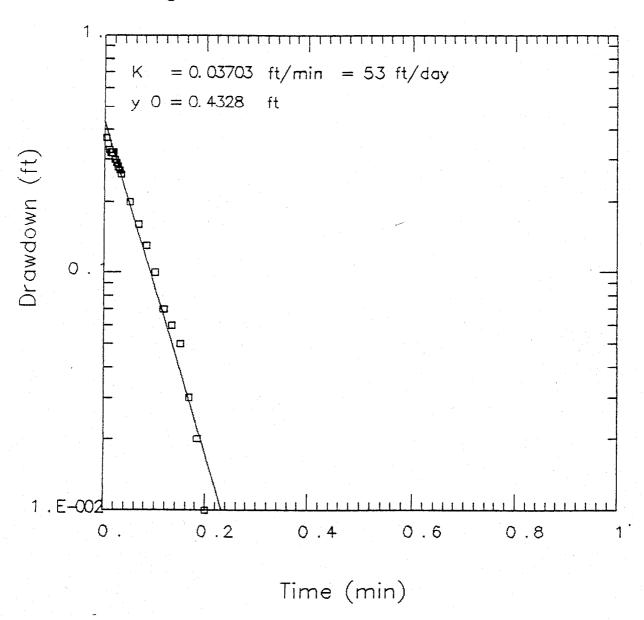

H₀ = initial head in well well due to slug injection or extraction [L]

 $\alpha = r_w^2 S/r_c^2$ [dimensionless]

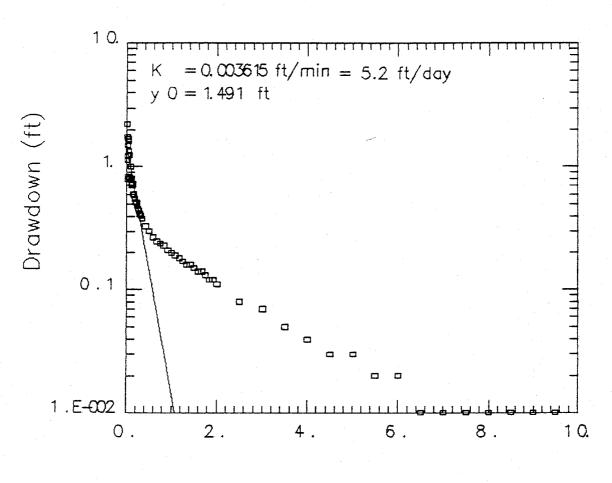

TORPEDO SHOP



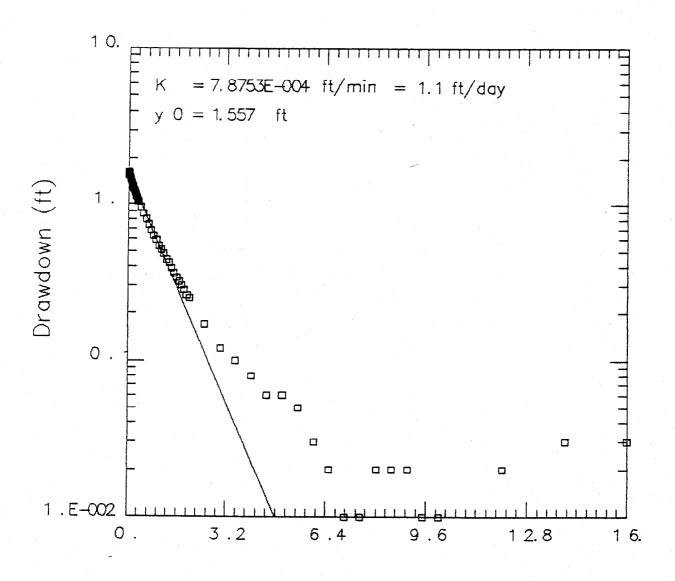
Slug Extraction Well 7-MW-2



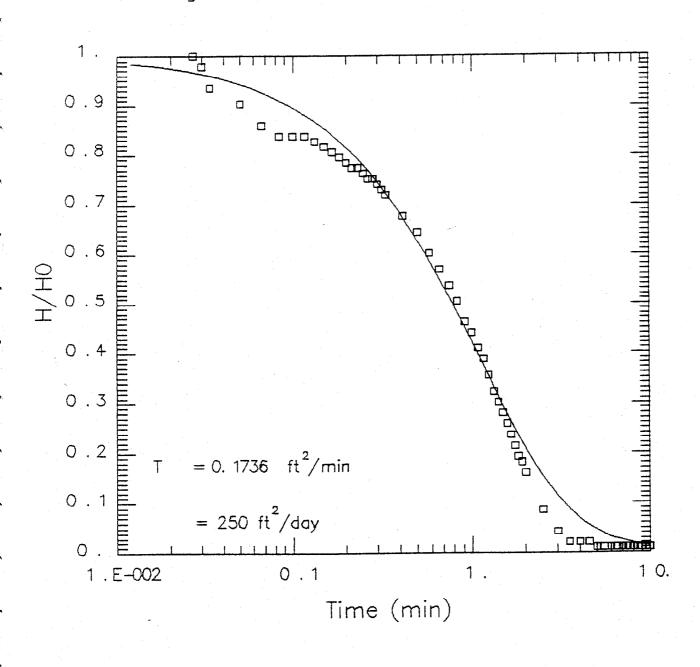
GOSS COVE LANDFILL

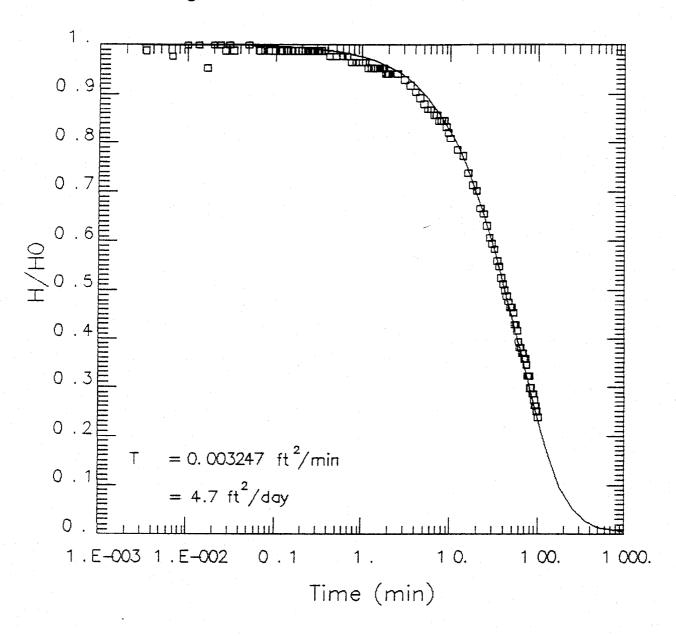


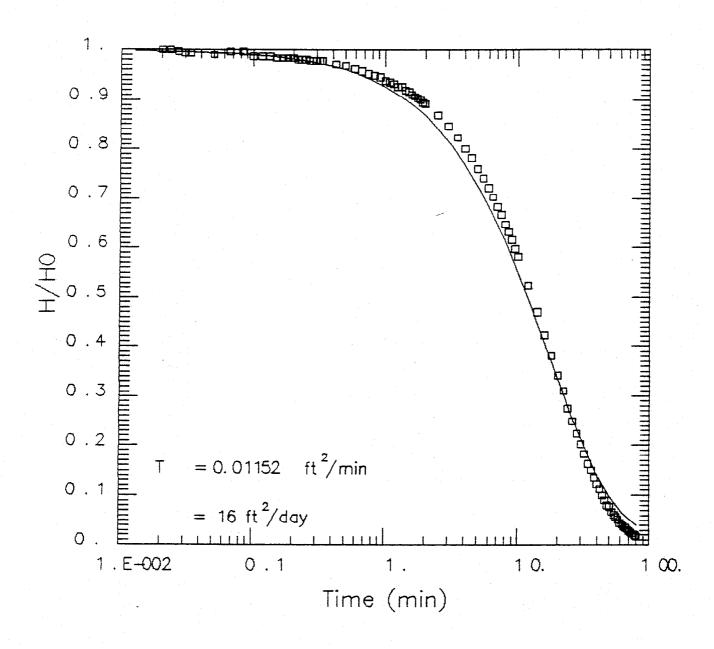
Slug Extraction Well 8-MW-4S

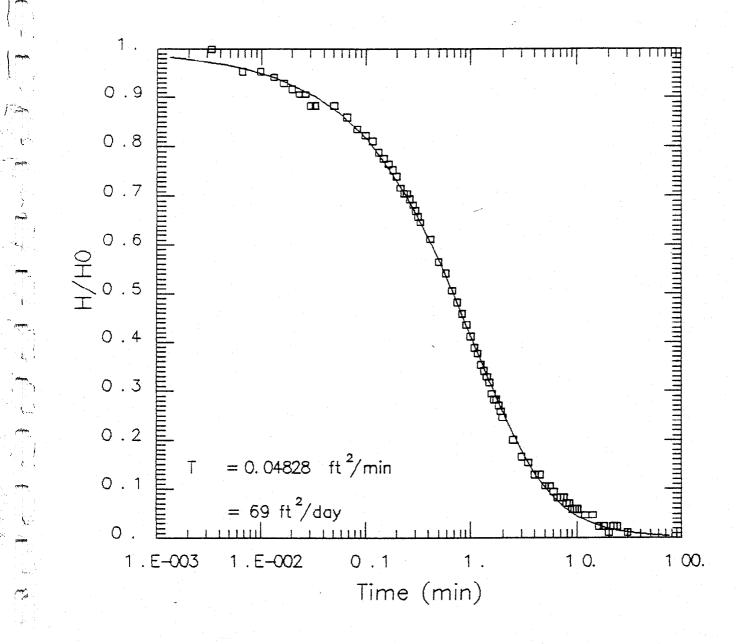


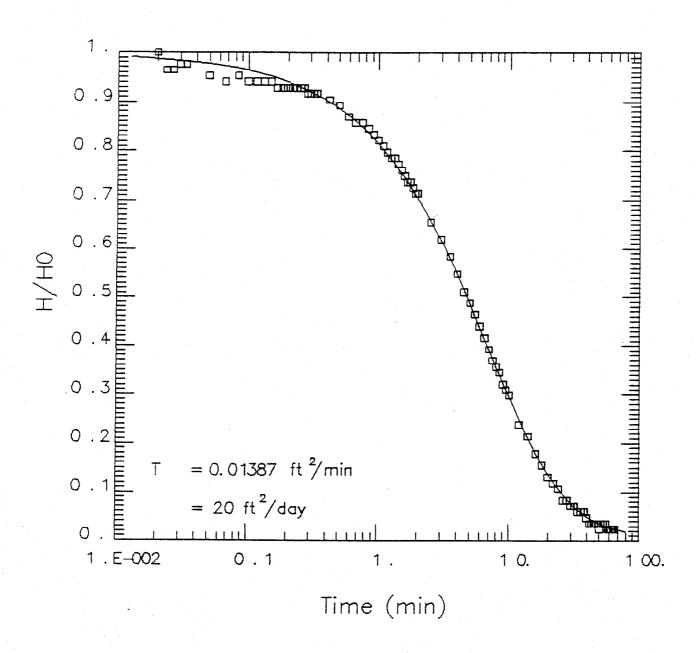
AREA A LANDFILL

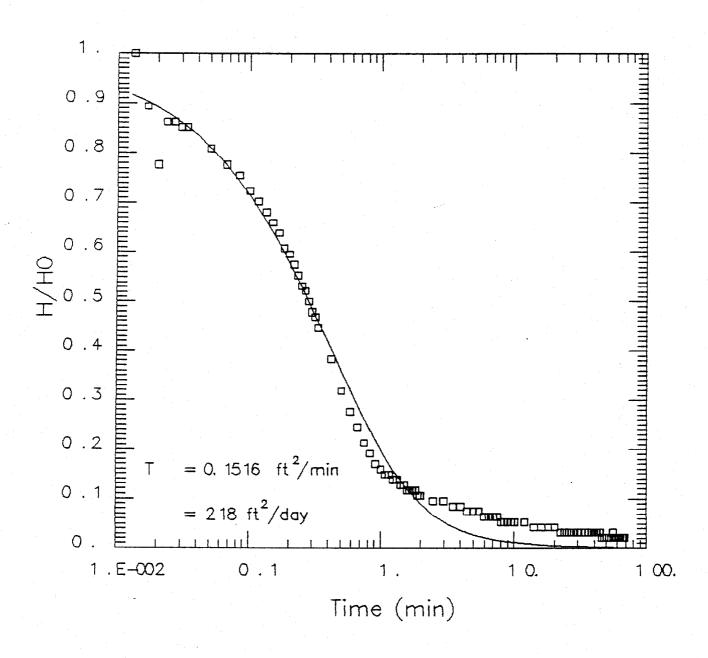

Slug Extraction Well 2W-MW-3S

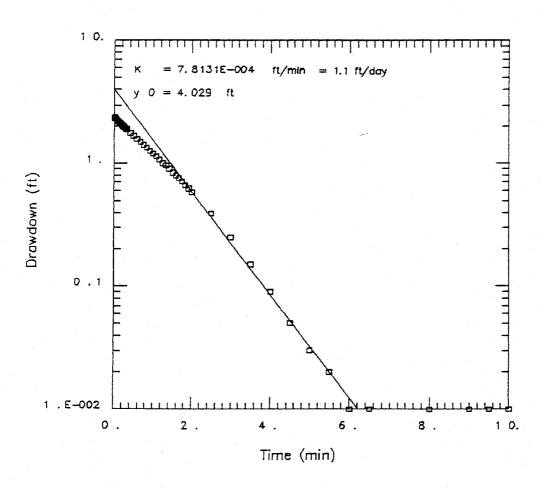

Time (min)

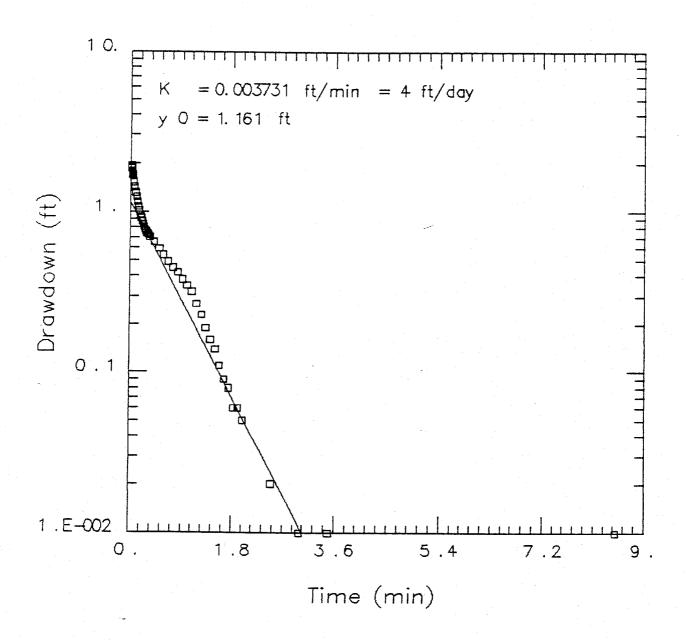


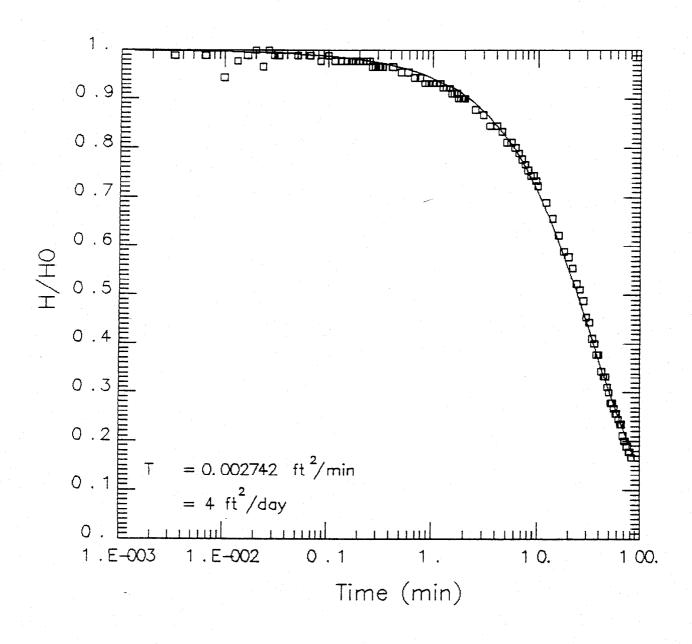

Time (min)

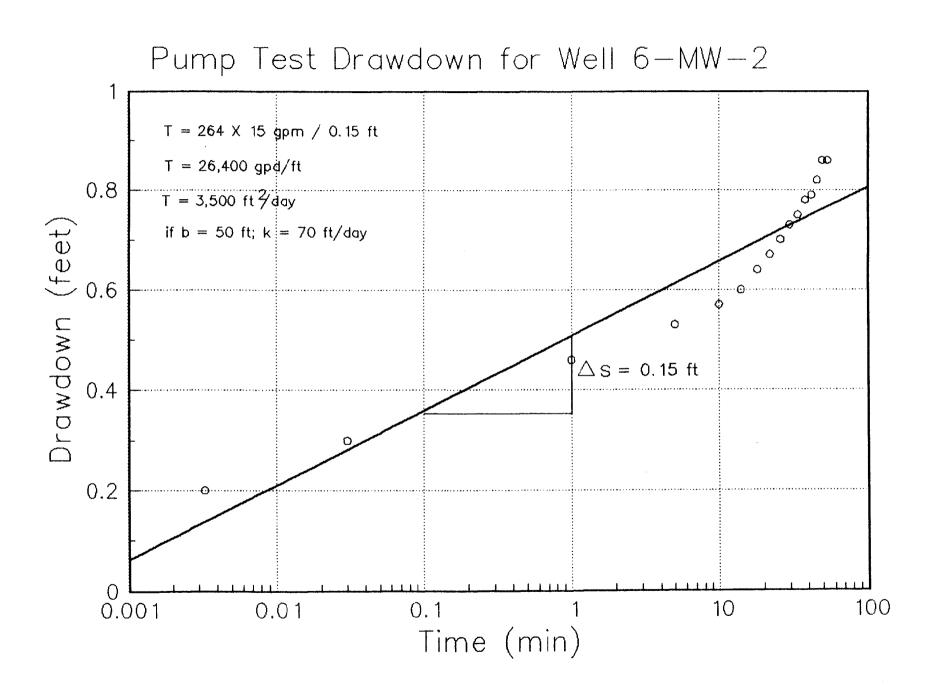


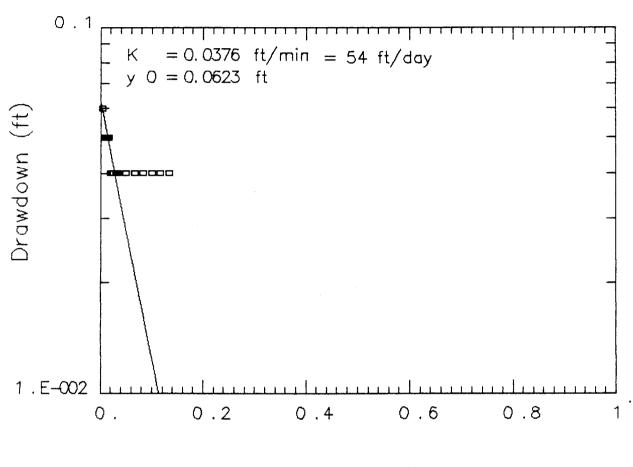

Slug Extraction Well 2W-MW-3D

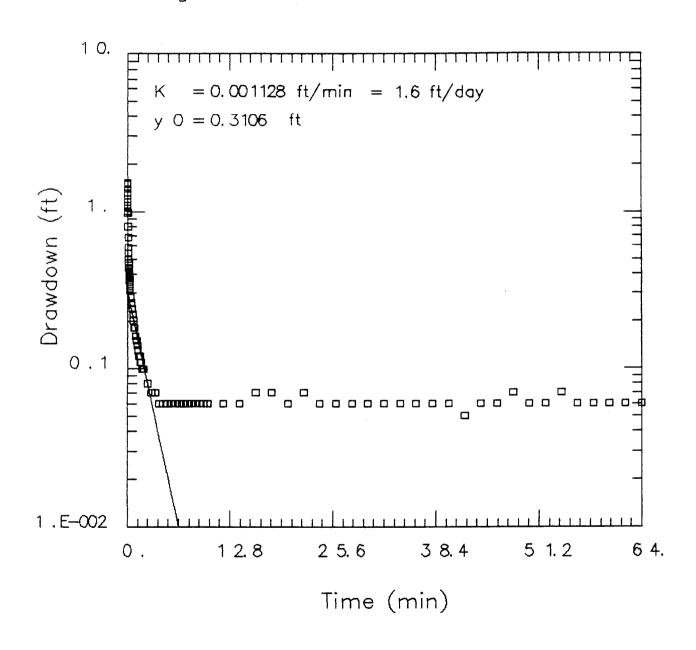


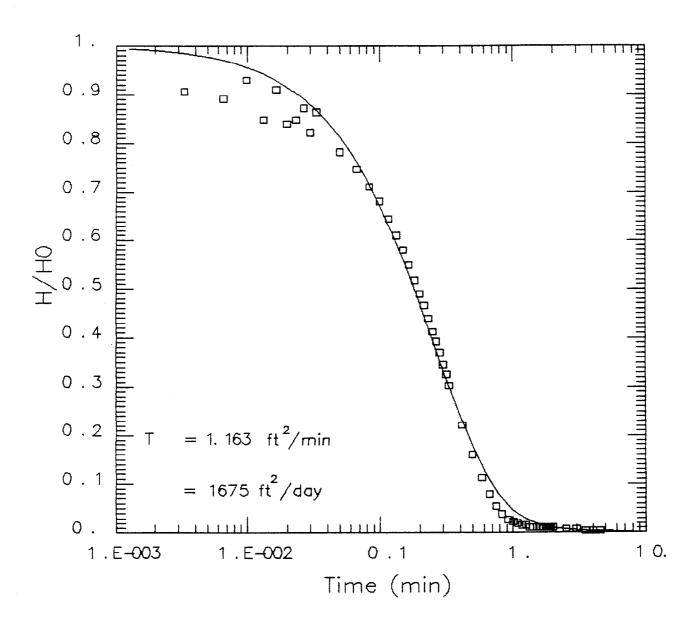


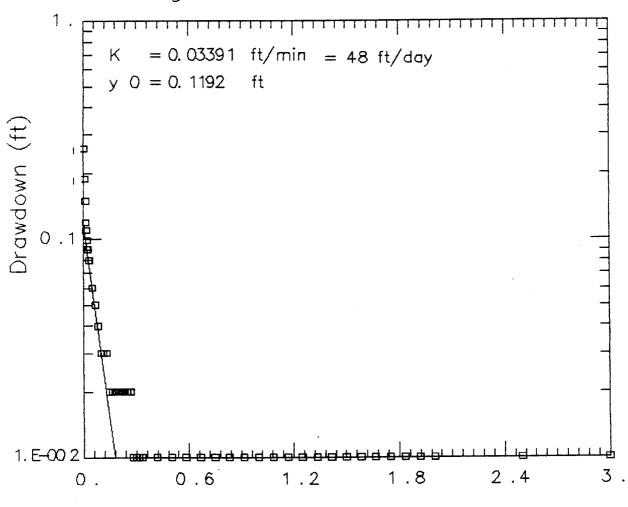




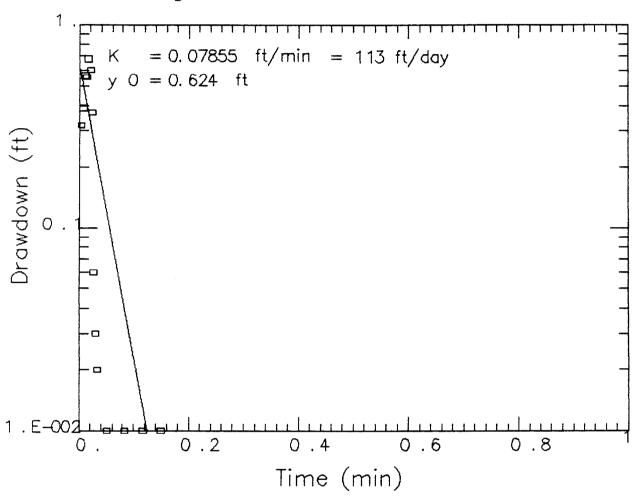


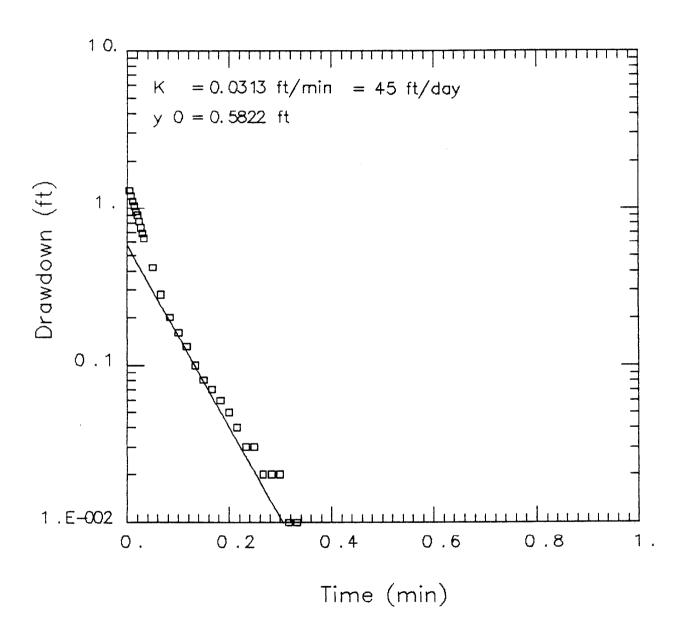

DEFENSE REUTILIZATION AND MARKETING OFFICE (DRMO)

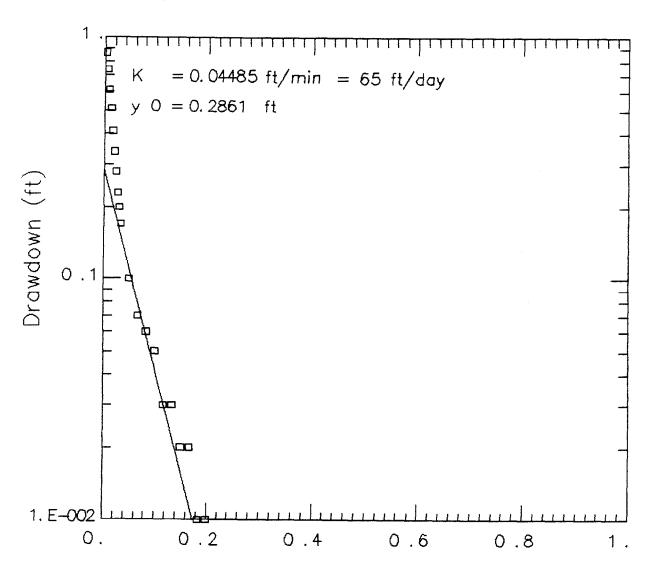


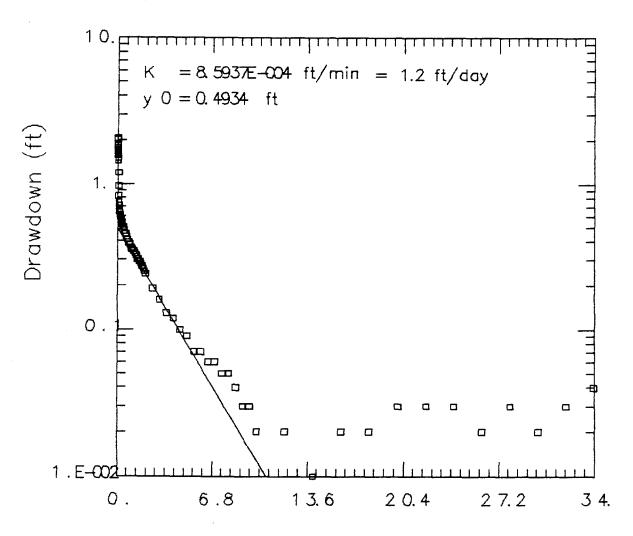

Time (min)

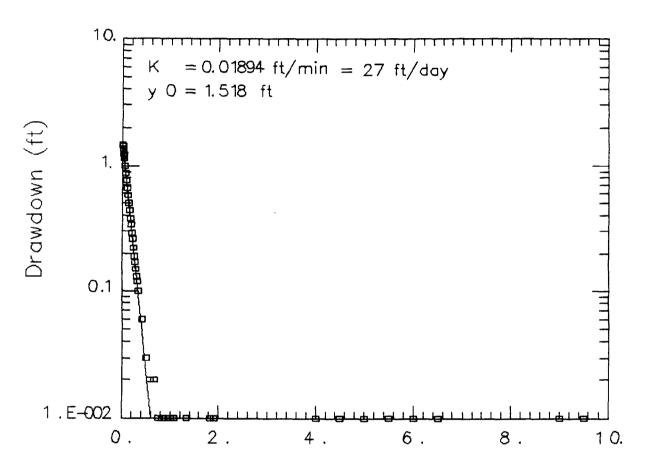
Slug Extraction Well 6 -MW-5S






LOWER SUBASE


Time (min)



Time (min)

Time (min)

Time (min)

APPENDIX C QUALITY ASSURANCE/QUALITY CONTROL REPORT AND DATA REVIEW CHECKLIST

APPENDIX C

1.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) REPORT

This report provides a summary of the QA/QC procedures carried out as part of this project.

This project was conducted in accordance with the approved Quality Assurance/Quality Control and Data Management Plan and Field Sampling Plan dated April 1989. The QA/QC plan was developed based on guidance provided in Sample and Chemical Analysis Quality Assurance Requirements for the Navy Installation Restoration Program, NEESA 20.2-047B. The program implemented at the Subase was performed under NEESA Level C Guidelines. This is equivalent to Data Quality Objective (DQO) Level 3 as defined by the USEPA. The major differences between Navy Level C and Navy Level D (DQO Level 4) occur in the analytical procedures used and validation of data. Level C allows for the use of EPA approved analytical methods whereas Level D requires the use of CLP procedures only. However, CLP analytical procedures were used for this project. Level C involves data review as described in Section 1.3 of this appendix, in contrast to the CLP validation required for Level D.

This report provides a discussion of field QC samples, field audits, data validation and data quality objectives.

1.1 Field Quality Control (QC) Samples

The QA/QC plan called for the collection of field duplicates, referee duplicates, trip blanks, field blanks, and equipment rinsates. Matrix spike and matrix spike duplicates were also analyzed as a part of laboratory QA/QC. Quality control samples specified frequencies to be collected, and actual sample quantity collected as part of this project are summarized in Table C-1.

The referee duplicates were collected by Alliance Technologies, an EPA oversight contractor. To date final results of the referee duplicate analyses have not been received, however, the USEPA has indicated that preliminary results indicate the precision of the analytical results is acceptable. The trip blanks contained deionized laboratory water which originate at the laboratory, stay with the samples, and are sent back to the laboratory. The equipment rinsates consisted of distilled water utilized as a final rinse during equipment decontamination procedures. The field blanks were samples of driller's water, and water used for equipment decontamination.

A small number of trip blanks contained low levels of volatile organics, but neither trip nor field blanks demonstrated any significant problems. Equipment rinsates were found to contain elevated levels of metals in the beginning of the sampling program. It was determined that the use of ten percent (10%) nitric acid solution as a decon fluid on the driller's split spoons may have been causing leaching of metals into the rinsates. This procedure was modified to use 1% nitric acid solution and the levels of metals in the rinsates did diminish. The equipment rinsates caused the estimation of some inorganic data, as is discussed in Section 1.3.2.

Matrix spikes and matrix spike duplicates were run for volatiles, semi-volatiles, and pesticides/PCBs at a frequency of 1 in 20 samples of similar matrix or one per batch of samples sent

TABLE C-1 **SUMMARY OF QA/QC SAMPLES**

SAMPLE TYPE	SPECIFIED FREQUENCY	SPECIFIED SAMPLE QUANTITY	ACTUAL SAMPLE QUANTITY
Field Duplicates	10% per matrix	32	36
Referee Duplicates	As determined by USEPA	***	10
Equipment Rinsates	Collect one per day, analyze every other day. Analyze remaining samples if pertinent analytes are found in the rinsates.	73	73
Trip Blanks	One per cooler containing VOC samples.	47	47
Field Blanks	One per source of decon and drilling water.	3	4

Matrix spikes and matrix spike duplicates were performed at a frequency of 5% per matrix for organic analyses. Matrix spikes and duplicates were performed at a frequency of 5% per matrix for inorganic analyses. 1.

^{2.}

to the laboratory, whichever was greater. For metals analysis, a duplicate and a matrix spike were run for every 20 samples of similar matrix, or one per batch of samples. Matrix spike recoveries were generally acceptable although small amounts of data were estimated or rejected based on poor matrix spike recoveries. See Section 1.3 for further discussion.

1.2 Field Audits

Several audits were performed by Atlantic's QA coordinator to ensure that the field work was conducted according to the procedures contained in the Field Sampling Plan. Field audits and/or inspections were performed on the following days:

DATE	TYPE OF SAMPLING OBSERVED
August 30, 1990 November 13, 1990 January 15, 1991	Subsurface Soils Subsurface Soils Ground Water

The field audits indicated general compliance with the required sampling procedures; several minor deviations of the procedures were noted and corrected.

USEPA oversight was provided by Alliance Technologies, Inc.

1.3 Data Validation

A checklist (included as an attachment to this appendix) was developed to facilitate the review of analytical data generated under Navy Level C requirements (DQO Level 4). The checklist incorporated the provisions for validation presented in the NEESA document entitled Sampling and Chemical Analysis Quality Assurance Requirements for the Navy Installation Restoration Program, NEESA 20.2-047B. The criteria presented in the checklist to evaluate sample and quality control results are based on the analytical requirements and validation guidelines defined in NEESA 20.2-047B.

Data validation involved the checking of laboratory generated forms for sample quality control, standards results, and assignment of the data qualifiers if appropriate.

The checklist provides summary pages for listing estimated and rejected data results upon completion of the validation process. The resulting data qualifiers were transcribed onto the laboratory data result forms and subsequently added to any data tables generated. A summary of the data qualifiers are provided on Table C-2.

It is important to note that there are a variety of reasons for estimating or rejecting data. Reasons for qualification of data are discussed in further detail in the subsequent sections. The completed data review checklists provide validation information pertaining to any specific samples.

1.3.1 Estimation of Laboratory Data (Organics)

The highest percentage of organic data estimation was based upon results of method blanks,

TABLE C-2 LABORATORY ANALYTICAL DATA QUALIFIERS

Organic	Data Qualifier Flags
ND	None detected.
J	The "J" flag indicates an estimated value due to validation requirements or when the data indicates the presence of a compound that meets identification criteria, but the quantitated value is less than the CRQL.
В	The "B" flag indicates that the analyte was found in the associated blank as well as in the sample.
D	The "D" flag indicates that the sample was diluted due to high concentrations.
Е	The "E" flag indicates compound concentrations that exceed the calibration range of the GC/MS instrument.
X or Y	The "X" or "Y" flag indicates that the compound values have been edited on a laboratory data system.
R	The "R" flag indicates that the result is rejected based on validation guidelines.
Inorgani	c Data Qualifier Flags
ND	None detected.
J	The "J" flag indicates an estimated value due to laboratory or data validation requirements.
В	The "B" flag indicates that the reported value is less than the CRDL, but greater than the IDL (Instrument Detection Limit).
R	The "R" flag indicates that the result is rejected based on validation guidelines.

equipment rinsates and trip blanks. The finding of organics in any of these blanks affects the sample results by allowing the reviewer to raise the detection limits of these analytes in associated samples (see Section B.7 of the Data Review Checklist). Other reasons for estimating relatively small amounts of organic data included the following:

- exceeded holding times;
- poor duplicate reproducability;
- matrix spike recoveries exceeding limits;
- surrogate recoveries exceeding limits;
- internal standards exceeding limits;
- pesticides calibration check compounds and continuing calibration check compounds outside of limits; and
- pesticides DDT and endrin allowable percent breakdown exceeded.

Several groups of samples were resampled due to grossly exceeded holding times. One batch of pesticide samples was estimated rather than rejected based on exceeding holding times. These samples included: 2WTB6(0-2), 2WTB6(4-6), 2WTB4(0-2), 2WTB1(8-10), 2WTB1 (10-12), 2WTB1(15-17), and 2WTB1(20-22). These were extracted within holding time but were analyzed eight to nine days outside holding time. Pesticides tend to exhibit stability once extracted into solvent. Since these samples were extracted within holding times, it was decided to estimate the data results rather than reject them. Data from other samples in the vicinity was evaluated before making this decision, and the results compared favorably.

1.3.2 Estimation of Laboratory Data (Inorganics)

The two main causes of estimated inorganic data were the presence of analytes in method and equipment blanks, and matrix spike recoveries outside of acceptable limits. These two factors accounted for the estimation of a significant amount of inorganic data. A small amount of inorganic data was also estimated based on poor laboratory and field duplicate reproducability.

1.3.3 Rejection of Laboratory Data (Organics)

Very few samples were rejected for organic parameters. One sample, 15TB3(4-8) pesticides was rejected due to holding times being grossly exceeded. Two samples, 8MW2(10-12) and 8TB3 (10-12), had positive pesticides rejected due to the lack of confirmatory runs. A few analytes were rejected due to the following problems:

- matrix spike recoveries < 10%;
- surrogate recoveries < 10%; and
- pesticides DDT and endrin exceeding allowable percent breakdown.

1.3.4 Rejection of Laboratory Data (Inorganics)

A small amount of none detected inorganic results were rejected as a result of matrix spike recoveries < 30%.

Due to the large number of samples analyzed in this investigation, the preceding sections discussing estimation and rejection of data are of a general scope. Only major sources of data

qualification and notable individual samples were discussed. The reasons for qualifying all individual samples are noted on the completed data review checklists.

1.4 <u>Data Quality Objectives</u>

Data validation was used to evaluate whether the data quality objectives (DQO) for all measurements (field and laboratory) had been reached. The DQOs include considerations of precision, accuracy, and completeness as summarized in the following paragraphs.

<u>Precision</u> is a test of the repeatability of a measurement. Precision is evaluated directly by recording and comparing multiple measurements of the same parameter on the same sample under the same conditions. These samples can take the form of laboratory or field duplicates. Precision is considered acceptable if the relative percent difference (RPD) between two samples is within \pm 20 percent. The RPD is calculated as:

$$RPD = \frac{V1 - V2}{\left(\frac{V1 + V2}{2}\right)} \times 100$$

Where V_1V_2 = two values obtained by analyzing duplicates.

Duplicate analysis results were scrutinized as part of the data validation process. RPDs were calculated by the laboratory and as part of data validation. Approximately seven percent of the analytical results were estimated due to duplicates having RPDs greater than 20 percent.

Accuracy of analysis was determined by the evaluation of matrix spike samples of known quantities. The degree of accuracy and recovery of an analyte expected for the analysis of QA samples and spiked samples is dependent upon the matrix, method of analysis, and compound or element being determined in the analysis. Unless otherwise specified, the QC objective for accuracy is a percent recovery of 75 to 125 percent.

Accuracy calculations, prepared by the laboratory, are provided in the laboratory analytical package. Analytes exhibiting values lower or higher than this were estimated in associated samples. Samples for inorganic analysis which were not detected and had associated spike recoveries <30% were rejected as part of data validation. Samples for organic analysis which were none detected and had spike recoveries <10% were rejected as part of data validation.

<u>Completeness</u> is a measure of the amount of valid data obtained relative to the total amount of data generated. This project's QC objective for completeness, as a percentage of valid data reported, was $\geq 90\%$. The actual completeness was calculated as follows:

$$C=100\frac{V}{T}$$

where: C = percent completeness

V = number of judgements deemed valid T = total number of analytes measured

$$C=100x\frac{36863}{37182}=99$$
%

Thus the completeness, or percentage of results determined valid, equaled 99%.

Based upon the performance of both field and laboratory QC samples, the data quality objectives for this project were met or exceeded. The data validation process was adequate to determine any significant problems with the data generated. Precision, accuracy and completeness were all acceptable.

DATA REVIEW CHECKLIST

Page 1 of 27 Revision 4 Date: 6/4/91

PART A: DATA SUMMARY		
Case Nos.:	Laboratory:	
Site:	Reference:	
ORGANICS:		
Date:	Reviewer:	
Aqueous Samples:		
Soil/Sediment Samples:		
QC Samples:		
INORGANICS:	e de la constitución de la const	
Date:	Reviewer:	
Aqueous Samples:		
Soil/Sediment Samples:		
QC Samples:		

Generated Under NEESA 20.2-047B Revision 4 Date: 6/4/91 A.1.0 <u>Data Review Checklist</u> YES NO N/A A.1.1 Does the package contain any Volatiles (VOA) data? A.1.2 Does the package contain any Semivolatiles (ABN) data? A.1.3 Does the package contain any Pesticides/PCB (PEST) data? A.1.4 Does the package contain any Metals/Inorganic data? Does the package contain any A.1.5 non-TCL data? A.2.0 Acceptability of Data A.2.1 Are all VOA data results [___] acceptable as reported? If no, list exceptions in A.3.0 and A.4.0. A.2.2 Are all ABN data results acceptable as reported? [____] If no, list exceptions in A.3.0 and A.4.0. A.2.3 Are all PEST data results acceptable as reported? [___] If no, list exceptions in A.3.0 and A.4.0. A.2.4 Are all Metals/Inorganic data acceptable as reported? [___] If no, list exceptions in A.3.0 and A.4.0. A.2.5 Are all non-TCL data results [___] acceptable as reported?

If no, list exceptions in A.3.0 and A.4.0.

Page 2 of 27

Navy Level C Review of Laboratory Data

Page 3 of 27 Revision 4 Date: 6/4/91

A.3.0 <u>Estimated Data Results</u>

List estimated data results:

<u>Sample</u>	<u>Fraction</u>	<u>Analyte</u>	<u>Value</u>	<u>Reason</u>
				····
			and the second s	

Page 4 of 27 Revision 4 Date: 6/4/91

A.4.0 Rejected Data Results

List rejected data results:

<u>Sample</u>	Fraction	<u>Analyte</u>	<u>Value</u>	Reason
				100000
410-410-410	1900			
And the Advantage of th				

			and the second s	

Page 5 of 27 Revision 4 Date: 6/4/91

	PART B: ORGANIC DATA REV	IEW		
B.1.0 <u>Data</u>	Completeness and Deliverables	YES	NO	N/A ¹
B.1.1	Is the Case Narrative present?	[]²	-	
B.1.2	Is the Chain of Custody present?	[]		
	Are any NEESA deliverables missin from the data package?	ng 	[]	
	ENDED ACTION: Call laboratory ation/resubmittal of any missing			r for
	Were the missing deliverables received?	[]	**************************************	******************
B.2.0 <u>Case</u>	<u>Narrative</u>			
B.2.1	Does the Case Narrative indicate any problems with any of the analyses?		[]	
List n	oted problems here:			
B.3.0 Hold	ing Times			
B.3.1	Review COC for sampling date, ar review Forms I for date of analy Were any VOA, ABN, or PEST sampl analyzed outside of holding time	ysis. Les	[]	

¹⁾ Not Applicable

²⁾ Bracketed column is desired response. Deviation from bracketed response requires following Recommended Action.

Page 6 of 27 Revision 4 Date: 6/4/91

[___]

[___]

[____]

B.3.1 Continued

RECOMMENDED ACTION: If any sample is extracted or analyzed outside of holding times, estimate all positive detects in the associated samples. If holding times are grossly exceeded, the reviewer may choose to reject non-detected results.

List samples (fraction) analyzed outside of holding times, and action taken:

B.3.2 Review Forms I for dates of extraction. Were any ABN or PEST samples extracted outside of holding times?

List samples (fraction) extracted outside of holding times, and action taken:

- B.3.3 If any samples were reanalyzed outside of holding times, are both the original and the reanalyzed runs reported?
- B.3.4 Review COC for shipping date. Were samples shipped within 24 hours of collection? [___] ____

B.4.0 <u>Surrogate Recoveries</u>

B.4.1 Review Forms II. Are any surrogate recoveries for any VOA or PEST samples or blanks outside of QC limits?

If yes, were samples reanalyzed? [___] ___ ___

Generated Under NEESA 20.2-047B Revision 4 Date: 6/4/91 B.4.1 Continued . . . Reanalysis okay? [___] RECOMMENDED ACTION: For VOA samples estimate positive results within that region of the chromatogram in the associated samples. (No action for PEST samples). List associated samples (compounds) and action taken: B.4.2 Are any surrogate recoveries in any ABN blank outside of QC limits? [___] If yes, was blank reanalyzed? [___] Reanalysis okay? [___] RECOMMENDED ACTION: Estimate all positive results in all associated samples. List associated samples (compounds) and action taken: B.4.3 Are any two surrogates in either the acid or the base/ neutral fraction of any ABN sample outside of QC limits? If yes, were samples reanalyzed?[___] Reanalysis okay? [___] RECOMMENDED ACTION: Estimate positive results within

Page 7 of 27

Navy Level C Review of Laboratory Data

RECOMMENDED ACTION refers to the data qualification action suggested in the U.S. EPA Data Validation Guidelines. These actions are not absolute: care and professional judgement should be used when qualifying data.

that region of the chromatogram in associated samples.

Navy Level C Review of Laboratory Data Page 8 of 27 Generated Under NEESA 20.2-047B Revision 4 Date: 6/4/91 B.4.3 Continued . . . List associated samples (compounds) and action taken: B.4.4 Are any surrogates in any sample recovered at less than 10%? [___] If yes, were samples reanalyzed? [___] Reanalysis okay? [___] RECOMMENDED ACTION: Estimate positive results and reject non-detected results within that region of the chromatogram in associated samples. List associated samples (compounds) and action taken: B.5.0 Matrix Spike/Matrix Spike Duplicates B.5.1 Were matrix spikes analyzed at the required frequency for each of the following matrices?

RECOMMENDED ACTION refers to the data qualification action suggested in the U.S. EPA Data Validation Guidelines. These actions are not absolute: care and professional judgement should be used when qualifying data.

List missing MS/MSD (fraction, matrix, concentration):

[____]

[___]

[

Low Water

Low Soil

Medium Soil

Page 9 of 27 Revision 4 Date: 6/4/91

		Da	te: 6/4/91
	ny VOA spike reco e QC limits?	overies are	
Wate	er Low Soil	Medium Soil	<u>N/A</u>
out of 1	0 out of 1	00 out of 10	***************************************
B.5.3 How man	ny VOA RPDs are o	outside QC	
<u>Wate</u>	er Low Soil	Medium Soil	<u>N/A</u>
out of	5 out of	5 out of 5	
sample. results of the unspi List affe B.5.4 How man	If the recovery or reject negative iked sample. ected samples (compared to the samples of the sa	hat compound in is <10%, then estive results for that ompound) and action overies	mate positive t compound in
	side QC limits?	77 11 mm 0 m 13	N7 / 3
		Medium Soil	
	ny ABN RPDs are o	outside	
Wate	er Low Soil	Medium Soil	<u>N/A</u>
out of 1	ll out of :	11 out of 11	·
List affe	ected samples (co	ompounds) and acti	on taken:

Navy Level (Generated Ur		Laboratory Data 20.2-047B	a	Page 10 Revision Date:	
B.5.6	How many Ploutside QC	EST spike recovening limits?	eries are		
	Water	Low Soil	Medium So	<u>il</u>	<u>N/A</u>
0	out of 12	out of 12	out of	12	
B.5.7	How many Pl limits?	EST RPDs are ou	tside QC		
	Water	Low Soil	Medium So	<u>il</u>	N/A
****	out of 6	out of 6	out o	f 6	4-4-6-7
L	ist affected	d samples (comp	ound) and ac	tion tal	cen:
a: e: fc s)	percent recoutside QC questions any of the recoveries associated also outside ECOMMENDED sociated mestimate position all composite/blank.	ABN, or PEST coveries or RPD limits, refer B.4.1 and B.4.2 surrogate perc for the spike/ with the MS/MS de of QC limits ACTION: If boothod spike/blaritive results an bounds in all seasociated same	s are to . Are ent blank D pair ? oth the MS/M nk are outsid d reject non- samples assoc	e QC lim -detecte ciated v	and the its, then d results with that
B.5.9	analyzed a	mple that was s an MS/MSD als s a field dupli			

Page 11 of 27 Revision 4 Date: 6/4/91

B.5.10 If no, compare the results for the non-spiked compounds in the MS/MSD/sample set, and calculate RSDs. Are any water RSDs > 30%, or any soil RSDs > 50%?

RECOMMENDED ACTION: If any RSD is > 30% for waters or > 50% for soils, estimate positive results for that compound in the affected samples.

If yes, list affected compounds (samples) and action taken:

B.6.0 Field Duplicate Samples

- B.6.1 Were field duplicate samples collected and analyzed at the required frequency?
- B.6.2 Compare the field duplicate
 sample results as well as the
 MS/MSD/sample unspiked compound
 results. Calculate the RPD or
 RSD for each compound. Was any
 RPD or RSD > 30% for aqueous samples
 or > 50% for soil samples? ____ [___]

RECOMMENDED ACTION: If any RPD or RSD is > 30% for aqueous samples or > 50% for soil samples, estimate positive results for that compound in all the samples used to calculate the RPD or RSD.

[____]

If yes, list the compound (RPD or RSD), and action taken:

Page 12 of 27 Revision 4 Date: 6/4/91

B.7.0 Method Blank/Spike Sampl	<u>.es</u>
--------------------------------	------------

B.7.1	For each day and each instrument	5	
	of VOA sample analysis, has a		
	method blank/spike sample been		
	analyzed for each sample matrix		
	and concentration analyzed?	[]	 _

If no, list missing method blank/spike samples (date, instrument, matrix, level):

B.7.2 For each extraction date and each instrument of ABN and PEST analysis, has a method blank/spike sample been analyzed for each sample matrix and concentration analyzed?

If no, list missing method blank/spike samples (fraction, extraction date, instrument, matrix, level):

_]

[___]

B.7.3 In addition to the method blank/spike sample, was a PEST blank/spike sample, spiked with at least one PEST or PCB compound besides dibutylchlorendate, analyzed? [___]

If no, list associated samples:

- B.7.4 Review Forms IV. Are all analyzed samples listed?
- B.7.5 Were any of the following compounds detected in any VOA or ABN method blank/ spike samples?

Navy Level C Review of Laboratory Data Generated Under NEESA 20.2-047B	Page 13 of 27 Revision 4 Date: 6/4/91
B.7.5 Continued	
a. Methylene chloride b. Acetone c. 2-Butanone d. Toluene e. Phthalate esters	
If yes, multiply 10x the highest bla found for each compound to determine "a	nk concentration action level."
B.7.6 Were any of the remaining TCL compounds detected in any VOA, ABN or PEST method blank/spike sample?	[]
If yes, multiple 5x the highest blank conformed to determine the "action of the compound to determine the conformed to the conformed the conformed to the confo	ncentration found tion level."
RECOMMENDED ACTION: Review Forms associated samples. Review Forms I for If associated sample concentration is < level, report value as the CRQL (non-associated sample concentration is > Clevel, elevate detection limit to sample and report as non-detect.	affected samples. CRQL and < action detect). If the RQL but < action,
List associated samples (compound) and	action taken:
B.7.7 Were trip, field, and equipment blanks analyzed at the required frequency?]
If no, list missing blanks (type, date):
B.7.8 Were any contaminants detected in any of the equipment blanks analyzed?	[]

Navy Level C Review of Laboratory Data Generated Under NEESA 20.2-047B	Page 14 of 27 Revision 4 Date: 6/4/91
B.7.8 Continued	
If yes, were the remaining equipment blanks additionally analyzed? []	
B.7.9 Were any of the following compounds detected in any VOA or ABN trip, field or equipment blanks?	
a. Methylene chloride	[]
b. Acetone c. 2-Butanone	[]
d. Toluene	
e. Phthalate esters	[]
If yes, multiply 10x the highest blanfound for each compound to determine "a	nk concentration ction level."
B.7.10 Were any of the remaining TCL compounds detected in any VOA, ABN or PEST trip, field or equipment blank?	[]
If yes, multiple 5x the highest blank confor each compound to determine the "act	ncentration found ion level."
RECOMMENDED ACTION: Same as above, excepare limited to the samples shipped wit and/or the samples taken the same day a field blank.	h the trip blank
List associated samples (compound) and	action taken:
B.8.0 GC/MS Tuning	
B.8.1 Review Forms V. Was a GC/MS tune performed every twelve hours on each VOA and ABN instrument?]
RECOMMENDED ACTION refers to the data qual:	ification action

suggested in the U.S. EPA Data Validation Guidelines.

used when qualifying data.

actions are not absolute: care and professional judgement should be

Page 14 of 27

	Review of Laboratory nder NEESA 20.2-047B	Data	Page 15 of 27 Revision 4 Date: 6/4/91
B.8.2	Were the ion abundance criteria met for each tune performed?		
	f no, list tune (frac atrix) and associated s		me, instrument,
B.8.3	Were all samples run w twelve hours of an acc GC/MS tune? f no, list affected sam	eptable []	
.	no, list affected sam	pres and accron	
B.9.0 <u>Init</u>	ial Calibration of the	GC/MS System	
B.9.1	Review Forms VI. Are ≤ 30% for all CCC comp all VOA and ABN initia calibration curves?	ounds for	
C	ECOMMENDED ACTION: Estompound in associated son-detected results as	amples. If RSD	> 50%, estimate
L	ist associated samples	(compounds) and	action taken:
B.9.2	Are the RRFs ≥ 0.300 f SPCC compounds (except ≥ 0.250)?	for all VOA bromoform	
	ENDED ACTION: Estimand in associated sample		esults for that

RECOMMENDED ACTION refers to the data qualification action suggested in the U.S. EPA Data Validation Guidelines. These actions are not absolute: care and professional judgement should be

used when qualifying data.

Page 16 of 27 Revision 4 Date: 6/4/91

		Date:	6/4/91
B.9.2	Continued		
	List associated samples (compounds) and	action	taken:
B.9.3	Are the RRFs > 0.050 for all ABN SPCC compounds? []		
	RECOMMENDED ACTION: Estimate positive recompound, and reject non-detected recompound in associated samples.	results sults	for that for that
	List associated samples (compounds) and	action	taken:
B.10.0 <u>Cc</u>	ontinuing Calibration of the GC/MS System	<u>n</u>	
B.10.	1 Review Forms VI. Are the %Ds \le 25% for all VOA and ABN CCC compounds? []		
	RECOMMENDED ACTION: Estimate positive of compound in associated samples. If estimate non-detected results as well samples.	%D > 5	0%, then
	List associated samples (compounds) and	action	taken:

	C Review of Laboratory nder NEESA 20.2-047B	Data	Page 17 of 27 Revision 4 Date: 6/4/91
B.10.2	Are the RRFs \geq 0.300 VOA SPCC compounds (bromoform \geq 0.250)?		
	ECOMMENDED ACTION: Esompound in associated		results for that
Li	ist associated samples	(compounds) and	action taken:
B.10.3	Are the RRFs > 0.050 SPCC compounds?	for all ABN []	
re	ECOMMENDED ACTION: eject negative results amples.	Estimate positive for that compou	ve results, and nd in associated
L	ist associated samples	(compounds) and	action taken:
B.11.0 <u>Inte</u>	ernal Standard Perform	ance	and the second s
B.11.1	Review Forms VIII. internal standard ar VOA and ABN analyses +100% of the associa calibration standard	reas for all within -50 to ted continuing	
If no,	list affected samples	(I.S.) and acti	on taken:
			•

RECOMMENDED ACTION refers to the data qualification action suggested in the U.S. EPA Data Validation Guidelines. These actions are not absolute: care and professional judgement should be

used when qualifying data.

Navy Level C Review of Laborate Generated Under NEESA 20.2-047	Page 18 of 27 Revision 4 Date: 6/4/91
B.12.0 Pesticide Instrument Ca	alibration
B.12.1 Review Forms VIII initial calibration check compound %RS the quantitation of	on linearity SDs < 10% for
If no, list compounds	(%RSD):
not met, then an addit	If linearity criterion for DDT is cional three point calibration curve quantitation of DDT, DDE, and DDD.
Was the additional the calibration curve for analyzed?	ree point DDT []
RECOMMENDED ACTION: not met, then estimate in associated samples List associated sampl	
	and docton banem.
B.12.2 Review Forms VIII. proper 72-hour ana sequence followed?	lytical
If no, note discrepan	cies and action taken:
B.12.3 Review Forms IX. continuing calibra %Ds ≤ 15% for the column, and ≤ 20% confirmation colum compounds?	tion factor quantitation for the

RECOMMENDED ACTION refers to the data qualification action suggested in the U.S. EPA Data Validation Guidelines. These actions are not absolute: care and professional judgement should be

used when qualifying data.

Page 19 of 27 Revision 4 Date: 6/4/91

RECOMMENDED ACTION: Estimate positive results for that compound in the associated samples.

List associated compounds (samples) and action taken:

B.13.0 Pesticide Instrument Performance

- B.13.1 Review Forms IX. Are the DDT RTs ≥ 12 minutes for all packed column analyses? [___]
- If no, list affected samples and action taken:
- B.13.2 Review Forms IX. Are all continuing calibration standard compounds within the defined RT windows?

List affected samples (compounds) and action taken:

[____]

[___]

B.13.3 Review Forms VIII. Are the % Breakdowns for either DDT or endrin or the combined % Breakdown > 20%?

RECOMMENDED ACTION: DDT - estimate positive results for DDT in associated samples. If DDT was not detected, but DDD and DDE are positive, then reject the detection limit for DDT. Endrin - estimate positive results for endrin in associated samples. If endrin was not detected, but endrin aldehyde and endrin ketone are positive, then reject the detection limit for endrin.

Page 20 of 27 Revision 4 Date: 6/4/91

B.13.3 Continued	
List associated samples (compounds) and action taken:	
	_
B.13.4 Review Forms VIII. Are the DBC RT %Ds < 2.0% for all packed column analyses? []	
If no, list affected samples (%D) and action taken:	
B.14.0 <u>Pesticide Compound Identification</u>	
B.14.1 Review Forms I and X. Are positive identifications confirmed by analysis on a secondary column? []	
RECOMMENDED ACTION: If confirmation of positive detect was not performed, reject results.	:8
List affected samples (compound) and action taken:	
B.14.2 Are the RTs for the compounds identified within the defined RT windows for both the primary and the confirmation column? []	
If no, list affected samples (compound, column) ar action taken:	ıd

Page 21 of 27 Revision 4 Date: 6/4/91

	PART C: INORGANIC DATA R	EVIEW		
C.1.0 <u>Dat</u>	a Completeness and Deliverables	YES	МО	N/A
C.1.1	Is the Case Narrative present?	[]		
C.1.2	Is the Chain of Custody present?	[]		
C.1.3	Are any NEESA deliverables missi from the data package?	ng ——	[]	
;	RECOMMENDED ACTION: Call the labor for explanation/resubmittal of any	ratory missin	project g delive	manager rables.
C.1.4	Were the missing deliverables received?	[]		
C.2.0 <u>Cas</u>	e Narrative			
C.2.1	Does the Case Narrative indicat any problems with any of the analyses?	e	[]	470-d hairmann spane
1	List noted problems here:			
C.3.0 <u>Pres</u>	servation and Holding Times	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	77.11	- 1
C.3.1	Review the COC for sampling date and review the Forms 10 for analysis dates. Were any mercus (28 days), cyanide (14 days), or metals (6 months) samples analysoutside of holding times?	ry	[]	

Page 22 of 27 Revision 4 Date: 6/4/91

RECOMMENDED ACTION: Estimate positive results for any samples which were analyzed outside of holding times.

List samples/analyte analyzed outside of holding times, and action taken:

C.4.0 Calibrations

C.4.1 Review Forms 2A. Were the ICV and CCV %R 90-110% for metals, 80-120% for mercury, and 85-115% for cyanide?

If no, list analytes (%R) and affected samples:

RECOMMENDED ACTIONS: If following any reanalysis, the ICV recovery for any metal is still outside of the 90-110 %R window, all sample results for that metal shall be rejected.

Estimate positive results for metals (75-89%, 111-125%), for mercury (65-79%, 121-135%), and for cyanide (70-84%, 116-130%). Estimate non-detected results for metals (75-89%), for mercury (65-79%), and for cyanide (70-84%). Reject all results for metals (<75%, >125%), for mercury (<65%, >135%), and for cyanide (<70%, >130%).

List any affected samples, analytes, and the recommended actions:

Page 23 of 27 Revision 4 Date: 6/4/91

c.	5	0	<u>Blanks</u>

C.5.1	Was a preparation blank analyze for each matrix, for every 20 samples, and for each digestion blank?			
C.5.2	Review Forms 3. Were all elements less than the IDL?	[]		-
I o	f not, list the elements and the f each found in any ICB, CCB or	highest preparati	concent on blan	ration k.

C.5.3 Were any samples identified as field or equipment blanks? If so, review the Forms I for those samples and list the elements and the concentrations of each found in the field or equipment blanks. [___]

List the action levels (10x highest concentration found in any calibration or preparation blank, and 5x highest concentration found in any field or equipment blank) for each element found in any blank.

RECOMMENDED ACTION: When the concentration of any analyte in a sample is greater than the IDL, but less than the Action Level, report the sample concentration with a J as estimated.

Page 24 of 27 Revision 4 Date: 6/4/91

List	the	actions	taken	and	the	affected	samples.
------	-----	---------	-------	-----	-----	----------	----------

C.	6.0	Interference	Chack	C+andard
- • •	0.0	THEFT FILE	CHECK	Standard

C.6.1 Review Forms 4. Were all %R
 of elements in the ICS AB
 solution > 80 and < 120%?</pre>

List the concentrations of any elements detected in ICS A > 2xIDL which should not be present.

[___]

RECOMMENDED ACTIONS: Estimate all associated sample results for those elements which did not meet the %R criteria. Reject all sample results for those elements for which %R was <50%.

For those elements present in the ICS A, which should not be present, estimate positive and non-detected results when the level of interferents in the sample are greater than 50% of that in the ICS. Reject positive results which are due entirely to the interfering element.

List any actions taken and the affected samples based on the results of the ICS.

C.7.0 Matrix Spike

C.7.1 Was a matrix spike prepared at the required frequency? [___]

Navy Level Generated	C Review of Laboratory Data Under NEESA 20.2-047B	Page 25 of 27 Revision 4 Date: 6/4/91
C.7.2	Review Forms 5A. Were all spike recoveries greater than 75% and less than 125% for elements for which the sample concentration was less than 4x the spike added?]
C.7.3	Was a post digestion spike analyzed for ICP elements that did not meet required criteria for spike recovery (Form 5B)? []
1	RECOMMENDED ACTIONS: Estimate all acesults for any analyte which does criteria. Reject all associated non analyte for which the %R was less than List the element, the percent recovery	not meet the %F-detects for any 30%.
	taken based on the results of the spik	
C.8.0 <u>Lab</u>	oratory Duplicates	W
C.8.1	Was a laboratory duplicate sample prepared at the required frequency?]
C.8.2	Review Forms 6. Were all RPDs <20% for aqueous samples or <35% for soil samples (within ±2xCRDL for analytes whose concentration is less than 5x CRDL in the duplicate samples)?]
S	RECOMMENDED ACTIONS: Estimate all assample results for any analyte whose criteria.	
	ist the element, the RPD, and any action the results of the laboratory duplicate	

Navy Level (Generated U	C Review of Laboratory Data nder NEESA 20.2-047B		Page 26 Revision Date:	n 4
C.9.0 <u>Field</u>	l Duplicates			
C.9.1	Was a field duplicate pair identified?	[]		
C.9.2	If so, calculate the RPD for each element. Were all RPDs <30% for aqueous samples or <50% for so samples (within 2xCRDL when results are less than 5xCRDL)?	or il		
Sa	COMMENDED ACTIONS: Estimate a imple results for any analyte vertical.	ll asso whose R	ociated p PD did r	positive not meet
Li th	st the element, the RPD, and any e results of the field blanks.	action	s taken 1	based or
C 10 0 Tabo	water Central Cample as Plants			
	ratory Control Sample or Blank/		<u>sample</u>	
C.10.1	Was an LCS or method blank spi analyzed for every matrix and every digestion batch?	.ke []		
C.10.2	Was a control chart provided?	[]		
C.10.3	Review Forms 7. Were all LCS recoveries within the internal QC limits set by the laboratory?	[]		
C.10.4	Were samples reanalyzed when other QC problems were found with the data?	[]		
re	COMMENDED ACTIONS: Estimate sults for those analytes whose	all ass	sociated ecovery	sample did not

Page 27 of 27 Revision 4 Date: 6/4/91

Reject all associated sample results for those analytes for which the LCS recovery was <50%. If the LCS results are outside the internal laboratory limits and if the matrix spike results are outside the CLP limits, and the laboratory <u>did not</u> reanalyze the samples, then reject all associated data.

List any analytes, the %R and any actions taken.

C.11	.0 Gran	ohite Furnace Atomic Absor	rption Ouality	Control
	C.11.1	Were analytical spike recoveries calculated ar written on the GFAA raw		
	C.11.2	Review the spike recover Were all recoveries betw 75-125%?	ries. veen []	
	C.11.3	If not, was the Method of Standard Additions (MSA) when required?	of used []	
	C.11.4	Were the correlation coegreater than 0.995?	efficients	
	pc >I th es sp bu co	COMMENDED ACTIONS: If same standard spike absorbed to the sample reported to the sample reported to the stimulation of the stimulation of the stimulation of the stimulation coefficient is essential.	ance then, for esults. For erecovery is a sit (UJ). For the data. If socitive resul	sample results non-detects, if 10% but <85%, post-digestion MSA is required ts. If the MSA
	Li	st any analytes, affecte	ed samples, an	nd any actions

APPENDIX D

APPLICABLE, RELEVANT AND APPROPRIATE REQUIREMENTS (ARARs)

APPENDIX D

APPLICABLE, RELEVANT AND APPROPRIATE REQUIREMENTS (ARARs)

1.0 CHEMICAL SPECIFIC ARARS

The following sections analyze federal and state requirements to determine whether or not they contain chemical specific standards that could be ARARs at NSB-NLON. Table 4-1 contains the status of each ARAR at each site. Table 4-2 is a listing of the most stringent chemical specific ARAR by media. These two tables, along with a further definition of ARARs, are found in Section 4.2 of this report.

1.1 Federal - Chemical Specific

Listed below is the chemical specific ARAR analyses for federal requirements.

Resource, Conservation and Recovery Act (RCRA) Hazardous Waste Standards

ARAR

40 CFR Parts 260 through 270

NSB-NLON is a RCRA treatment, storage or disposal facility (TSDF), therefore, RCRA correction action requirements under Section 3004u are applicable to all Solid Waste Management Units (SWMUs). The following sites are classified as SWMUs:

- CBU Drum Storage Area
- Torpedo Shops
- Goss Cove Landfill
- Bunker A-86
- · Area A Wetland
- DRMO

- OBDANE
- Spent Acid Storage and Disposal Area
- Waste Oil Tank at Former Gasoline Station
- Area A Landfill
- OBDA
- Waste Oil Pit of Building 79 at Lower Base

To date, final regulations have not been promulgated to address corrective actions for SWMUs. Interim final guidance regarding corrective actions, to be considered, is found in EPA 530/SW89031 RCRA Facility Investigation (RFI) Guidance. Region I personnel indicated that the clean-up standards used in the RCRA corrective action program are based upon chemical information contained in the Integrated Risk Information System (IRIS) and Superfund guidance on risk assessment. In addition, Region I has developed a document titled "Supplemental Risk Assessment Guidance for the Superfund Program" which they use in establishing clean-up standards. This is identical to the method they use for Superfund risk assessments. As a result, based upon existing guidance, the clean-up standards for SWMUs and those generated by Superfund risk assessments are the same.

Three of the investigation sites (Lower Base, DRMO and Spent Acid Storage and Disposal Area) contain RCRA hazardous waste deposited prior to 1980, therefore RCRA regulations will only be applicable if these wastes are excavated. Regardless, sections of the RCRA requirements

are relevant and appropriate to areas containing RCRA hazardous waste. Final regulations regarding RCRA wastes are found in 40 CFR 260 through 270. In particular, the chemical specific numerical values in the ground water monitoring sections (40 CFR 264 subpart F) and the land disposal restriction section (40 CFR 268) contain chemical specific ARARs. The ground water standards are based on Maximum Contaminant Levels (MCLs), therefore, these regulations contain no chemical specific standards more stringent than those contained in the Safe Drinking Water Act (refer to section below regarding the SDWA).

The chemical specific standards in the land disposal restriction regulations would only be ARARs if hazardous wastes are excavated and disposed at another onsite or offsite location.

RCRA Solid Waste Standards

Potential Future ARARs

40 CFR 240 through 257

To date, solid waste regulations consist of recommended practices. No chemical specific standards have been promulgated under these standards other than the definition of an open dump which does reference MCLs and Water Quality Criteria (WQC). Future rule makings may be relevant and appropriate to some disposal areas and applicable to any new solid waste disposal areas created as part of remedial actions. The following areas contain solid waste: Goss Cove, DRMO, Area A, OBDA, OBDANE and Bunker A-86.

RCRA UST Standards

ARAR

40 CFR 280

These standards apply to all the underground storage tanks except for those used or storing heating oil. 40 CFR Part 280, Subpart F contains standards regarding remedial actions for releases from underground storage tanks. No chemical specific standards are contained in these regulations. The UST standards do require "removal of free product to the maximum extent practicable as determined by the implementing agency". CERCLA clean-ups do not encompass petroleum products therefore, strictly speaking, these standards are only ARARs for sites with underground tanks or pits containing hazardous substances. Regardless, the Naval Installation Restoration Program does address petroleum products, therefore, for continuity the UST standards will be considered ARARs in this report even if only petroleum contamination is present. The following sites contain underground petroleum storage tanks: Lower Subase, Former Gasoline Station, and Torpedo Shops.

Safe Drinking Water Act

ARAR

40 CFR 140 through 143

There are no public water supply wells located at NSB-NLON, therefore, SDWA requirements are not applicable. The base is located in an area that would have ground water classifications of Class II and III under EPA's guidelines for ground water classification and that have a GB/GA or GA classification pursuant to Connecticut's ground water classification system. The GB/GA designation means that ground water is presently known or presumed to be contaminated and that it is the State's long term goal to restore the ground waters to drinking water

quality. The GA designation means that ground water should be suitable for private drinking water supplies without treatment. The Class II designation is for ground waters that are not special highly valuable, irreplaceable drinking water sources, and that are current or potential sources of drinking water or have other beneficial uses. Class III ground water is not a potential source of drinking water and of limited beneficial uses. Class III ground waters include ground waters (1) with a total-dissolved solids (TDS) concentration over 10,000 mg/l or (2) that are so contaminated that they cannot be cleaned up using conventional water treatment methods.

As it is the goal of the state government to maintain or restore ground waters to drinking water quality, MCLs are relevant and appropriate requirements for the base. Proposed Maximum Contaminant Levels (PMCLs) should be considered when selecting a remedy at this site as they may soon replace the MCL being used for this purpose. Maximum contaminant level goals (MCLGs), secondary MCLs, and health advisories should also be considered at this site when developing a protective remedy when there are no MCLs.

The appropriateness of the state's GB/GA classification in areas that could be classified as Class III under the federal system and that are serviced by city water is questionable. These areas include Goss Cove, Lower Base, and DRMO. If not for the state designation, MCLs would not be ARARs in these areas. There is an administrative process to amend individual classifications.

Water Quality Criteria (WQC)

ARAR

Section 304 of the Clean Water Act (CWA)

Water quality criteria are non-enforceable guidance developed under the Clean Water Act (CWA) and are used by the state, in conjunction with the designated use for a stream segment, to establish water quality standards under CWA 303. The state has classified the water quality of this segment of the Thames River as SC/SB. This classification is described as being suitable for fish, shellfish, and wildlife habitat; good aesthetic value; suitable for industrial cooling; and suitable for recreational boating and, in some places, bathing. The classification is further described as presently not meeting water quality criteria for one or more designated uses due to pollution. As these standards are non-enforceable guidance, they would not be applicable, however, many of the criteria are relevant and appropriate. In particular, the standards for in-stream water quality to protect aquatic organisms and those to protect human health from ingestion of fish are relevant and appropriate based upon designated water quality criteria goals for this section of the Thames River. Based upon information developed during the risk assessment, other values based upon more recent studies may be determined to be more appropriate than the water quality criteria.

There are several small streams and man-made drainage structures that transport storm water to the Thames River. It may not be appropriate to apply water quality criteria to protect aquatic life and for fish consumption to these surface waters.

All other water quality criteria (i.e., those to protect human health from ingestion of water and fish, and acute in-stream criteria to protect aquatic organisms) in certain circumstances, should be considered at this site when developing a protective remedy. Specifically, WQC for consumption of fish and water should be considered as potential clean-up standards for ground water when MCLs, PMCLs, MCLGs, or recent health advisories are not available. Acute aquatic WQC should be considered when there is no chronic criteria or criteria for fish consumption only.

40 CFR Part 60

NESHAPs (National Emission Standards for Hazardous Air Pollutants) are a set of emissions of specific chemicals from specific production activities and would not be applicable, nor generally would they be relevant and appropriate. It is unlikely that any remedial actions will constitute listed productions processes under NESHAPs. NESHAP constituents (mercury, vinyl chloride and benzene) have been detected onsite, therefore, there is a possibility that selected remedial actions would make NESHAP standards relevant and appropriate.

Clean Air Act (NAAQs) (continued)

Potential ARAR

40 CFR Part 50

National Ambient Air Quality Standards (NAAQs) are national limitations for ambient concentrations set for specific chemicals to protection national health and welfare. States develop State Implementation Plans (SIPs), which are reviewed and approved by EPA to meet these standards. Requirements set under the SIP are federally enforceable, and thus may become an ARAR. However, those requirements usually only apply to "major sources". No proposed remedial activities at NSB-NLON are expected to be classified as major. NAAQs do contain standards for lead and particulate matter which could potentially be relevant and appropriate to certain types or remedial actions.

Toxic Substances Control Act (TSCA)

Potential ARAR

40 CFR Part 761

Among other requirements, TSCA authorizes EPA to establish regulations for the control of chemical substances or mixtures that pose an imminent hazard. To date, such regulations have been developed for polychlorinated biphenyls, fully halogenated chlorofluoroalkanes, and asbestos. The applicability and relevance of the PCB standards will be discussed below. Asbestos and halogenated chlorofluoroalkanes are not believed to be present in soil or ground water at NSB-NLON. EPA under TSCA reviews data on thousands of chemicals each year and from these preliminary reviews decides if a detailed review is warranted to determine if regulations are necessary. Part of this detailed review is a risk assessment. Risk assessments have not been performed on any of the chemicals found at this site.

PCB regulations under TSCA regulate the manufacture, use, storage and disposal of PCBs, and the cleanup of PCB spills. In general, these standards only apply to PCB items with concentrations above 50 ppm or to materials contaminated from such items. Four sites (Torpedo Shop, Area A, DRMO and Goss Cove Landfill) contain detectable levels of PCBs. None of these areas contain soil or ground water with PCB concentrations above 50 ppm. It is believed, based upon information provided by NSB-NLON, that the PCB contamination in Goss Cove, DRMO and Area A Landfill resulted from the storage/disposal of PCB items with PCB concentrations greater than 50 ppm. The source of PCB contamination at the Torpedo Shops is unknown.

The PCB regulations contain USEPA's spill cleanup policy which includes chemical specific guidance applicable to PCB spills which occurred after May 4, 1987. The contamination at Goss Cove and DRMO is believed to have occurred prior to May 4, 1987. As this is a policy and not a regulatory standard, and as it applies to spills which occurred after May 1987, the USEPA cleanup policy is not considered to be an ARAR. The policy, however, is to be considered. The policy contains numerical standards for solid surfaces and soils located in outdoor electrical substations, restricted access areas, and nonrestricted access areas. The standards for soils are 10 ppm PCBs by weight in non-restricted areas and 25 ppm PCBs by weight in restricted areas. Non-restricted areas include residential/commercial areas.

Federal Insecticide, Fungicide and Rodenticide Act (FIFRA)

Not ARAR

40 CFR Part 165 (recommended procedures) and 180 (tolerance levels)

Under FIFRA, USEPA regulates the sale, distribution, use, storage, and disposal of all pesticide products in the United States. EPA accomplishes this primarily by product registration and labeling requirements. It is illegal to dispose of a pesticide in a manner inconsistent with its label. No pesticide products have been detected at NSB-NLON, therefore this part of FIFRA is not a potential ARAR. Applied pesticides are not considered products. CERCLA cleanups do not encompass applied pesticide products, therefore, strictly speaking, these standards should not be ARARs at NSB-NLON except for at pesticide disposal areas. Regardless, the Naval Installation Restoration Program does encompass applied pesticides.

In addition to the labeling requirements, EPA has promulgated tolerance levels for pesticides and pesticide residues in or on raw agricultural commodities under the authority of Federal Food, Drug and Cosmetic Act.

At NSB-NLON, no agricultural commodities or wildlife are obtained for consumption, therefore, these tolerance levels are not potential ARARs. DDT and its metabolics are the only substances found at NSB-NLON for which tolerance levels have been established. These values should be considered when developing a protective remedy.

1.2 State of Connecticut Chemical Specific

Listed below is the chemical specific ARAR analyses for State of Connecticut requirements.

Hazardous Waste Management Regulations

ARAR

22a-449(c)-100 through 110 RCSA (Regulations of Connecticut State Agencies)

Rationale for ARAR status is the same as for federal RCRA which is described above. For all applications to chemical specific ARARs, Connecticut's regulations are identical to EPA's.

Solid Waste Management Regulations

Not ARAR

These regulations apply to solid waste disposal areas. Potentially the following areas at NSB-NLON could be considered Solid Waste Disposal Areas (SWDAs) under these requirements:

- Goss Cove:
- DRMO;
- Area A;
- OBDA;
- OBDANE; and
- Bunker A-86.

These regulations, among other requirements, prohibit open dumps, require permits to construct and operate SWDAs, contain standards for operation of SWDA to prevent hazards to human health or the environment, and have standards for closure of SWDAs. There are no chemical specific standards other than a reference to Connecticut's Water Quality Standards and Criteria, and standards for quality of public drinking water. Both of these standards are considered ARARs, therefore, the solid waste management regulations do not contain any new chemical specific ARARs.

Underground Storage Tank Regulations

ARAR

22a-449(d) RCSA

These regulations contain standards applicable to non-residential underground storage tanks containing liquid oil or petroleum products, except for tanks under 2,100 gallons in size used solely for onsite heating or intermittent power generation. These regulations are applicable to the underground storage tanks located in the sites investigated under this study. There are no numerical chemical specific standards in the regulations. If a failure is determined, the owner is required to immediately cease such discharge and reclaim, recover and properly dispose of the discharged liquid and any other substance contaminated by it, restore the environment to a condition and quality acceptable to the commissioner, and repair damage caused by the discharge, all to the satisfaction of DEP. To the extent that these regulations require removal of free product, they will be considered ARARs. The above section regarding RCRA UST regulations should be referred to regarding the cleanup of petroleum products under CERCLA.

Pesticide Regulations

Not ARAR

22a-174-1 through 29 RCSA

These regulations pertain to pesticide registration, classification, discarding of pesticide containers, and use of pesticides. There are no pesticides found at the site other than residuals of DDT and its metabolites in soil. As such, those regulations are not applicable. Neither are they relevant or appropriate as the regulations pertain to pesticide products and their use.

Air Pollution Control Regulations

Potential ARAR

22a-174-1 through 20 RCSA

The applicability of New Source Performance Standards (NSPS) and National Ambient Air Quality Standards (NAAQS) under the state program is relevant and appropriate as described in the above section regarding the Federal Clean Air Act. Connecticut's Ambient Air Quality Standards are listed in Section 22a-174-24 RCSA and requirements regarding performance standards are in section 22a-174-3 RCSA.

Other significant potential ARARs in Connecticut's regulations regard requirements for fugitive dust, control of odors, and, most importantly, those regarding hazardous air pollutants.

Nuisance odors are prohibited by state regulations. There are numerical standards for twelve compounds, four of which are present at the NSB-NLON (methyl ethyl ketone, tetrachloroethene, toluene and phenol). All other nuisance odors are determined by the DEP, primarily by the ability to detect an odor in ambient air that has been diluted seven to one.

Under Connecticut's regulations, persons must take reasonable precautions to prevent the emission of fugitive dust. Reasonable precautions are further defined in the regulations 22a-174-18(b)(i) through (v), RCSA.

Connecticut's hazardous air pollutant regulations control over 800 different chemicals. Basically, these regulations prohibit the emission of any hazardous air pollutants from any stationary source at a concentration at the discharge point above maximum allowable stack concentrations. Maximum ambient stack concentrations are calculated to insure that listed Hazardous Limit Values (HLV) are not exceeded at the property line of the facility. HLVs for hazardous air pollutants for eight hour and 30 minute averaging times are listed in the regulations. These standards may be applicable to certain types of remediation such as air stripping. Although not generally applicable, particularly to non-stationary sources, these standards do appear relevant and appropriate as they contain ambient air standards for hazardous constituents. If available, the eight hour standard would be the relevant and appropriate requirement. If not available, the 30 minute standard will be used. For some inorganic compounds there are no standards relevant to the form of the compound, e.g., dust versus fumes versus oxides. In those cases the HLV that most closely relates to NSB-NLON will be a "to be considered" material, and the chemical form the standard applies to directly will be noted in the comment section of Table 4-2.

Standards of Water Quality

ARAR

22a-426 CGS (Connecticut General Statutes)

These standards specify Connecticut Water Quality Standards and Classifications for surface and ground waters. The classification given by the state designates the desired use for waters of the state and, therefore, will dictate which water quality criteria are relevant and appropriate and will dictate whether or not standards in the state and federal Safe Drinking Water Act are relevant and appropriate. For example, if the designated surface water use is as a source of drinking water, MCLs and water quality criteria to protect human health from ingestion of water and fish would be ARARs. There are no actual numerical values in these statutes, however, they are the key factor in determining if values from other environmental programs are applicable, relevant or appropriate. Waters of the state include ground and surface waters. For further detail, refer to the above sections on Federal WQC and SDWA.

Water Pollution Control

Not ARAR

22a-426 through 22a-438 CGS

These statutes and regulations govern, among other things, potential sources of pollution to the waters of the State and permits for discharges to the waters of the State. Waters of the State

include ground and surface waters. To date, the requirements for a permit have not been applied to inactive disposal areas. Orders to correct potential sources of pollution have been issued to several inactive disposal sites. There are no numerical standards in the statute, regulations, or orders, however, decisions made regarding cleanup standards under these orders should be considered. In particular, the state guidance regarding contaminated soil remediation should be considered. This guidance sets chemical specific standards to define clean soil based upon the ground water classification of an area. In areas such as NSB-NLON with a ground water classification or goal of GA the state guidelines define "clean" soils as those that leach metals below MCLs as determined by the EP Toxicity test, or for volatile organic contamination those soils that contain concentrations below the Connecticut DOHS action level on a mass basis, i.e., the mg/kg concentration in soil must be below the mg/l action level concentration for drinking water. It should be noted that the newer, more aggressive TCLP rather than the EP Toxicity test procedures was used for this investigation. The overall policy of the DEP is to stay away from numerical standards and rely on case-by-case decisions based upon site specific environmental setting, location of receptors, and ground and surface water classifications and goals. In selecting a remedial design, the state guidelines will be considered as a screening tool, however, final selection of a remedial design will rely primarily on a case-by-case analysis, i.e., the risk assessment.

Standards for Quality and Adequacy of Public Drinking Water

<u>ARAR</u>

19-13-B101 through B102 RCSA

These regulations are similar to the federal SDWA requirements and will be considered ARARs for the same reasons explained in the above section on SDWA ARARs. As stated above, there are no public water supplies at the NSB-NLON. There is one private water supply located in a residential property along Route 12. This property was recently purchased by NSB-NLON. Regarding chemical specific standards, it should be noted that Connecticut has established MCLs for copper and cyanide. Connecticut also has a standard for EDB (ethylene dibromide) in private water supplies. The State of Connecticut has developed action levels for several chemicals. Action levels are defined as the limit that, when exceeded, could reasonably create a health risk to persons using the water for drinking or other purposes. These action levels should be considered when developing a protective remedy.

2.0 LOCATION SPECIFIC ARARS

The following sections analyze federal and state rules to determine whether or not they contain location specific standards that could be ARARs at NSB-NLON.

2.1 Federal - Location Specific Standards

Listed below is the location specific ARAR analyses for federal requirements.

RCRA Location Standards

Potential ARAR

40 CFR 264.18

Only the Lower Base and the DRMO investigation sites contain hazardous waste and have

portions located in or adjacent to the 100 year flood elevations (see Figure D-1). Areas containing hazardous waste must be designated, constructed and operated, and maintained to avoid washout.

There are no Holocene age faults, salt domes, underground mines, or caves at the NSB-NLON.

CWA, Section 404, and the Rivers and Harbors Act, Section 10

Potential ARAR

40 CFR 230 and 33 CFR 320-330

These standards regulate the discharge of dredged or fill material into navigable waters of the United States, including adjacent wetlands, and alterations, including structures and filling, in navigable waters of the United States. The DRMO, Area A, OBDA, Goss Cove, and Lower Base sites are located in wetlands, or adjacent to navigable waters, as shown in Figure D-1. The Thames River is a navigable water of the United States. As a result, these standards would be applicable to the above listed sites if regulated activities are conducted.

Executive Order 11988, Floodplain Management and Executive Order 11990, Protection of Wetlands

Potential ARAR

These orders require federal agencies, wherever possible, to avoid or minimize adverse impacts of Federal actions upon wetlands and floodplains, and to preserve and enhance the natural value of wetlands and floodplains. The following sites have sections located in floodplains or wetlands:

- DRMO;
- Area A;
- OBDA:
- Goss Cove; and
- Lower Base.

As a result, these requirements would be applicable to the listed sites if regulated activities are conducted.

National Historic Preservation Act

Not ARAR

16 USC Parts 470 et seq., 36 CFR Part 800

This act requires that any historical or cultural resources included on or eligible for inclusion on the Natural Register of Historic Places be identified. If such historical places or cultural resources are not present, or will not be affected, no further investigation regarding compliance with this act is necessary.

In preparing a draft environmental impact statement for the Thames River Dredging Project, a Phase I-A cultural resources survey was conducted in May, 1990. This investigation considered an approximately four mile section of the Thames River from its mouth on Long Island Sound northward to the Navy Subase at New London. Only four historic archeological sites were recorded in the general vicinity of the proposed dredging project area. The only site located in the

vicinity of any of the site investigation areas is the U.S.S. Nautilus Memorial, designated a National Historic Landmark in 1982, and towed to the Navy Subase in 1985. It is presently a popular tourist attraction. This landmark, however, will not be affected by any potential remedial activities.

Endangered Species Act

Not ARAR

16 USC Part 1531 et seq.

This act provides a means for conserving various species of fish, wildlife, and plants that are threatened with extinction. This act protects endangered species themselves and critical habitats for endangered species. In preparing a draft environmental impact statement for the thames River Dredging Project, both CTDEP and the United States Fish and Wildlife Service were contacted regarding the existence of threatened or endangered species in the vicinity of the proposed dredging project. This area includes all the investigation sites under this study. No known threatened or endangered species are known to exist in the project area. Furthermore, the ecological survey for the risk assessment did not detect the presence of any endangered species at NSB-NLON.

Wild and Scenic Rivers Act

Not ARAR

16 USC Part 1271, et seq., 36 CFR Part 297

This act established requirements applicable to projects affecting designated and proposed wild, scenic, or recreational rivers within the National Wild and Scenic Rivers System. The Thames River nor any of its tributaries on the NSB-NLON property are designated or proposed to be designated as wild, scenic, or recreational rivers. As such, this act is not a potential ARAR.

Fish and Wildlife Coordination Act

Potential ARAR

16 USC Part 661 et seq., 40 CFR Section 122.49

This act is to protect fish and wildlife when Federal actions result in the control or structural modification of a natural stream or body of water. No controls or modifications are likely as part of potential remedial actions at this site. Regardless, this act is considered a potential ARAR as the Navy is a federal agency and natural bodies of water are present.

Coastal Zone Management Act

Potential ARAR

16 USC Part 1451 et seq.

This act requires that federal agencies conducting or supporting activities directly affecting the coastal zone perform these activities in a manner that is consistent with approved State coastal zone management program. Connecticut does have an approved Coastal Zone Management Program. The following sites, as shown in Figure D-1, are located within the coastal boundary: DRMO, Lower Base, Former Gas Station, and Goss Cove. As a result, remedial designs for these sites should consider this act, even though it is unlikely that activities regulated under this act will be conducted at this site.

16 USC Parts 1131 et seq.

This act creates the National Wilderness Preservation System in order to preserve the wilderness character of any designated areas. There are no wilderness areas within the project area.

Clean Air Act NAAOS

Potential ARAR

40 CFR Part 50

EPA under the CAA has promulgated NAAQS for six pollutants which are referred to as criteria pollutants. Based upon these standards, air quality control regions throughout the country are classified as attainment or non-attainment for each criteria pollutant depending upon whether they meet the standard (attainment area) or do not meet the standard (non-attainment area). The NSB-NLON is located in the Eastern Connecticut (No. 41) air quality control region. This region is classified as an attainment area for total suspended particulates (TSP), sulfur dioxide (SO₂), carbon monoxide (CO), and nitrogen dioxide (NO₂), and non-attainment for ozone (O₃).

Major sources of air pollution must comply with specific standards that vary depending upon whether the source is in an attainment or non-attainment area. It is not anticipated that any remedial activities will be classified as a major source. The definition varies for pollutant, process and attainment status, however, most sources that generate less than 100 tons per year of a criteria pollutant are not classified as major sources.

2.2 State of Connecticut - Location Specific Standards

Listed below is the location specific ARAR analyses for State of Connecticut requirements.

Inland Wetlands or Watercourses

Potential ARAR

22a-39-1 through 15 RCSA

Under these laws the CTDEP, or a municipality that has adopted its own wetlands program may regulate "any operation within or use of a wetland or watercourse involving removal or deposition of material, or any obstruction, construction, alteration or pollution, of such wetlands or watercourses".

The Thames River and designated inland wetlands are shown in Figure D-1. The following sites contain inland wetlands: Area A and Overbank Disposal Area. As such, if remedial activities constitute regulated activities under these rules and regulations, they will be ARARs.

Tidal Wetlands

Not ARAR

22a-30-1 through 17 RCSA

The CTDEP regulates activities in the tidal wetlands under these rules and regulations. A permit must be obtained from CTDEP prior to conducting a prohibited activity. The following

activities are prohibited: draining, dredging, excavation, or removal of soil, mud, sand, gravel, aggregate or rubbish of any kind; or dumping, filling, or depositing thereon of any soil, stones, sand, gravel, mud, aggregate of any kind, rubbish or similar material, dumped either directly or otherwise; or the erection of structures, driving of pylons, or placing of obstructions, whether or not they change the tidal ebb and flow.

There are no designated tidal wetlands at NSB-NLON, therefore, these rules are not potential ARARs.

Sanitation of Watersheds, 19-13-B32 RCSA

Not ARAR

These regulations concern watershed areas and specify set-back distances, and have disposal prohibitions into watercourse tributaries to public water supply. As the NSB-NLON has no public water supplies onsite, nor is it tributary to any water supply areas, these regulations are not potential ARARs.

Agricultural Lands Preservation, 22a-26gg-1 through 8 RCSA

Not ARAR

These regulations regard preservation of historical farmlands and the processes to change land use designations. None of the investigation sites at the NSB-NLON are classified as historical farmlands, therefore, these regulations are not potential ARARs.

Connecticut Siting Council Hazardous Waste Management Facility Siting Regulations

22a-116-B-1 through 11 and 22a-122-1 RCSA

Potential ARAR

These regulations contain administrative procedures for the Connecticut Siting Council regarding the issuance of certificates of public safety and necessity to new hazardous waste disposal facilities. Within the regulations are minimum separation distances between active portions of a facility and facility property lines. As these rules only apply to new facilities, they would only apply to remedial activities at NSB-NLON if it is necessary to construct new disposal facilities. Disposal facilities are defined as incinerators, long-term storage facilities (greater than one year), or land disposal facilities.

Coastal Zone 22a-92 & 94 CGS

Potential ARAR

Areas located within the coastal zone boundary are identified in Figure D-1 and include the following investigation sites: Goss Cove, Former Gas Station, Lower Base and DRMO. As such, any remedial activities directly affecting the coastal zone must be done in a manner consistent with Connecticut's Coastal Zone Management Program.

Connecticut RCRA Program 22a-449(c) 100 through 110 RCSA

Potential ARAR

See discussion on federal RCRA standards. There are no significant differences regarding location standards between federal and state regulations.

Stream Channel Encroachment

Not ARAR

22a-342 to 350 CGS

These statutes prohibit the establishment of any obstruction or encroachment, without a

permit from the DEP, within designated stream channel encroachment lines. There are no stream channel encroachment lines established in this section of the Thames River. As a result, these standards are not potential ARARs.

Aquifer Protection Areas

Not ARAR

22a-354a through 356 CGS

These statutes provide for the municipal regulation of various activities in aquifer protection areas. These statutes came from public acts 88-324, 89-305, and 90-275. As of this date regulations and mappings under this statute are not complete. The NSB-NLON property is not presently an existing well field and to date has not been identified as a potential well field area. As such, any future regulations would not be ARARs.

Regulation of Dredging and Erection of Structures and Placement of Fill in Tidal, Coastal or Navigable Waters

Potential ARAR

22a-359 through 363 CGS

These statutes control activities in navigable waters of the state waterward of the high tide line. It is unlikely that remedial activities that constitute regulated activities under this statute will take place. Regardless, as the Thames River is a navigable waterway, there is a potential for such activities as a result this statute is a potential ARAR for sites adjacent to the Thames River.

Storage of Hazardous Substances Near a Watercourse

Potential ARAR

22a-134p CGS

This law regulates storage of hazardous substances pursuant to Section 302 of the Emergency Planning and Community Right-to-Know Act near watercourses. The Thames River is a watercourse. Regulations have not yet been promulgated under this statute. It is unlikely that the regulations will be applicable to remedial actions at NSB-NLON as no defined hazardous substance products have been found at the base, regardless, they may be relevant and appropriate to the extent that they will specify best management practices for the storage of hazardous substances.

3.0 ACTION SPECIFIC ARARS

Action specific ARARs cannot be specifically defined until remedial alternatives have been selected during the Feasibility Study. When the detailed analysis of alternatives is made during the Feasibility Study, action specific ARARs can be defined. This list was compiled with the understanding that there are no asbestos, radioactive materials, or pesticides present onsite except for the presence of DDT and its metabolites in soils.

3.1 Federal Action Specific ARARs

Listed below is the action specific ARAR analyses of federal requirements.

40 CFR 260 through 272

The only contaminants at the Navy Subase that originate from listed hazardous wastes are the organic solvents detected in soil and ground water near Building 79. The only areas containing characteristically hazardous waste are the Lower Base, DRMO and the Spent Acid Storage and Disposal Area sites. In these three areas, soils contain TCLP lead concentration above the regulatory threshold. These regulations govern the generation, transportation, treatment, storage or disposal of those soils or ground water. RCRA will be applicable, or relevant and appropriate to wastes removed from these three sites. The disposal standards would only be applicable onsite if the waste was excavated and redeposited onsite as these wastes were deposited prior to the implementation of the RCRA regulation (11/19/80).

Federal RCRA Underground Storage Tank Regulations

Potential ARAR

40 CFR 280

These rules govern corrective actions for leaks from underground storage tanks. These requirements will be applicable to several of the underground storage tanks and relevant and appropriate to underground storage tanks that are exempt from these regulations, i.e., those used solely for onsite heating. Strictly speaking, CERCLA only regulates hazardous substances. Oil is not classified as a hazardous substance under CERCLA. Regardless, the Naval Installation Restoration Program does address oil and petroleum contamination.

Federal RCRA Standards for Solid (Non-Hazardous) Waste Management

Potential ARAR

40 CFR 240 to 257

To date, these regulations consist of a set of recommended procedures. This may change with future rule makings. These future recommendations may be applicable to any new solid waste disposal area and relevant and appropriate regarding any solid waste that is to remain in place.

USEPA Underground Injection Control

Potential ARAR

40 CFR 1144 through 147

These rules would only be an ARAR if any of the remedial actions selected constitute underground injection. It is not likely that underground injection will be used at this site.

DOT Hazardous Materials Transportation

Potential ARAR

49 CFR

For sites containing hazardous materials, these regulations may be ARARs if such hazardous materials are transported. The only sites with hazardous materials present are the Lower Base, DRMO, and the Spent Acid Storage and Disposal Area sites. At these sites, hazardous wastes which are classified as hazardous materials are present.

As this is a federal Superfund site, these regulations are applicable to all investigation and remedial activities at the Naval Subase.

USEPA - NPDES, 40 CFR 122 through 125

Potential ARAR

NPDES (National Pollution Discharge Elimination System) permits are required for any discharges to navigable waters. If remedial activities include such a discharge, the NPDES standards would be ARARs.

USEPA and Army Corps of Engineers Rules Regarding Activities in Wetlands and Watercourses

Potential ARAR

33USC 404, 33 CFR 320-330, 40 CFR 230

Certain activities such as dredging and filling in wetlands and watercourses require federal permits from the Army Corps of Engineers and the USEPA.

USEPA Review of New Sources and Modification

Potential ARAR

40 CFR 60

These standards would only be ARARs if any remedial treatment technologies are classified as major sources. All major new sources require permits. It is unlikely that any remedial activities will be classified as major sources.

USEPA PCB Regulations Under TSCA

Potential ARAR

40 CFR 761

These standards are potential ARARs at any site containing PCBs. The regulations govern, among other things, the storage, transportation and disposal of PCBs, and the cleanup of PCB spills. For the most part, these standards only apply to PCB items with concentrations above 50 ppm or to materials contaminated from such items. Several areas contain detectable levels of PCBs. None of these areas contain PCBs above 50 ppm. It is believed that the PCB contamination in Goss Cove, DRMO and Area A Landfill resulted from the storage of transformers containing greater than 50 ppm of PCBs. At the Torpedo Shop, the source of PCBs is unknown.

For the above listed sites, if contaminated soils are removed, the storage, transport and disposal requirements in the TSCA regulations would be ARARs.

National Environmental Policy Acts (NEPA)

Potential ARAR

NEPA requires analysis of environmental impacts and consideration of alternatives for significant activities that are federally sponsored. Any remedial actions that constitute significant activity would make NEPA an ARAR.

3.2 State of Connecticut

Listed below is the action specific ARAR analyses of State of Connecticut requirements.

Water Pollution

Potential ARAR

22a-430-1 through 8 RCSA

The State of Connecticut is the authority to issue NPDES and UIC permits. In addition, Connecticut requires permits for discharges to any surface or ground waters of the state. As a result, any remedial activities that constitute a discharge to waters of the state require a permit.

Solid Waste Management

Potential ARAR

22a-209-1 through 13 RCSA

Solid wastes have been buried at the following sites: Goss Cove, DRMO, Area A, and OBDA, OBDANE and Bunker A-86. Therefore, if these materials are to be excavated and disposed, the new disposal site must have a permit to manage solid waste.

Hazardous Waste Management

Potential ARAR

22a-449 (c)-100 through 110 RCSA

These standards are nearly identical to the federal RCRA regulations and are potential ARARs for the reasons described in that section. Two additional action specific requirements of the state are that transporters of hazardous waste must have a permit, and the underground injection of hazardous waste is prohibited.

Safe Storage and Transportation of Chemicals

Potential ARAR

29-337-1 through 3 RCSA

These regulations directly reference 49 CFR which govern the transportation of hazardous materials. See the section on DOT hazardous materials regulations for a discussion of these regulations as ARARs.

Connecticut Siting Council Hazardous Waste Facility Siting Regulations

Potential ARAR

22a-116-B1 through 11 RCSA

These regulations require a certificate of public safety and necessity from the Connecticut Siting Council prior to construction of any new hazardous waste disposal facility. The term hazardous waste refers to RCRA hazardous waste and PCBs, and the term disposal means landfilling, incineration or long term storage.

25-128-33 through 64 RCSA

These rules apply to any new water supply or withdrawal wells; they do not apply to monitoring wells. If remediation involves installation of withdrawal wells, these rules will be applicable. The sections of these rules regarding monitoring well abandonment should be considered even though they are not applicable.

Air Pollution Control

Potential ARAR

22a-174-1 through 29 RCSA

Permits are required for certain stationary sources of air pollution. Any remedial activity so defined would require a permit from CTDEP.

Transportation of Oils and Chemical Liquids

Potential ARAR

22a-454 CGS

A permit is required from CTDEP to transport waste oils or chemical liquids.

Non-Residential Underground Storage Tanks Potential ARAR

22a-449(d) RCSA

These regulations would be ARARs for any remedial activities associated with failures of underground petroleum storage tanks at the Naval Subase.

Connecticut OSHA, 31-372-101-1910 RCSA

Not ARAR

These regulations directly reference federal OSHA regulations, however, they only apply to state employees.

Control of Noise Regulations

Potential ARAR

22a-69-1 through 7.4 RCSA

These regulations have allowable noise levels based upon noise class zones. Exempted from these regulations are mobile sources and construction noise. The Naval Subase would be classified as a Class C noise zone under these regulations. Any non-exempt remedial activities would need to comply with applicable standards.

The Connecticut Water Diversion Policy Act

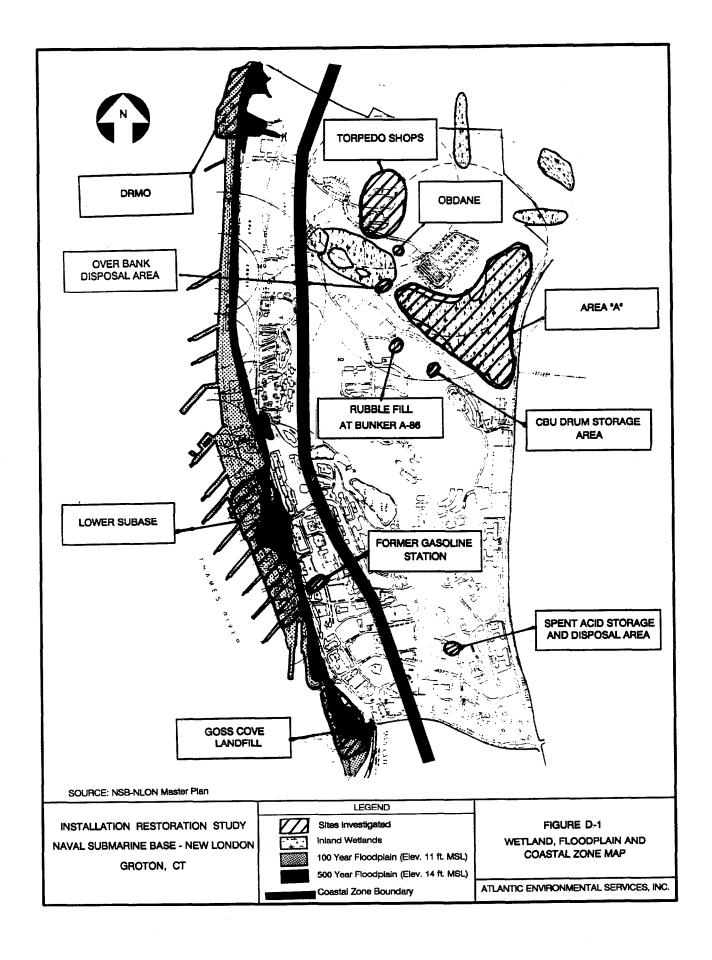
Potential ARAR

22a-365 through 378 CGS

A permit is required for any non-exempt diversion of waters of the State. To the extent that any remedial activities at this site constitute a non-exempt diversion, a permit from CTDEP is

required. A few examples of non-exempt diversions are wells, or withdrawals or discharges to surface waters greater than 50,000 gallons per day.

4.0 TBCs (TO BE CONSIDERED)


Listed below are federal and state requirements that will be considered in selection of a final remedy at NSB-NLON. Certain statutes or regulations contain both ARARs and TBCs. This list, in addition to listing requirements that are solely TBCs, details the TBC sections of the statutes or regulations that are also ARARs. Requirements that are also ARARs are so noted.

4.1 Federal TBCs

- Air/Superfund National Technical Guidance Study Series. Volume 1-4 (EPA/450/ 1-89/001-EPA/45-/1-89/004)
- Safe Drinking Water Act (ARAR)
 - Proposed MCLs (Maximum Contaminant Levels)
 - MCLGs (Maximum Contaminant Level Goals)
 - Proposed MCLGs
 - Secondary MCLs
 - Health Advisories
- CWA Water Quality Criteria (ARAR)
 - Standards to protect human health from water and fish ingestion
- RCRA Facility Investigation (RFI) Guidance (EPA 530/SW89031)

4.2 State of Connecticut TBCs

- Department of Health Services Action Levels for drinking water and for lead in soils under their Standards for Drinking Water Program (ARAR).
- Connecticut Department of Environmental Protection "Contaminated Soils Removal and Disposal Guidelines" under Water Pollution Control Authorities (ARAR).
- Guidelines for Soil Erosion and Sediment Control

